<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<meta name="Generator" content="Microsoft Word 15 (filtered medium)">
<!--[if !mso]><style>v\:* {behavior:url(#default#VML);}
o\:* {behavior:url(#default#VML);}
w\:* {behavior:url(#default#VML);}
.shape {behavior:url(#default#VML);}
</style><![endif]--><style><!--
/* Font Definitions */
@font-face
        {font-family:"Cambria Math";
        panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
        {font-family:Calibri;
        panose-1:2 15 5 2 2 2 4 3 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
        {margin:0in;
        font-size:12.0pt;
        font-family:"Calibri",sans-serif;
        mso-ligatures:standardcontextual;}
span.EmailStyle17
        {mso-style-type:personal-compose;
        font-family:"Calibri",sans-serif;
        color:windowtext;}
.MsoChpDefault
        {mso-style-type:export-only;}
@page WordSection1
        {size:8.5in 11.0in;
        margin:1.0in 1.0in 1.0in 1.0in;}
div.WordSection1
        {page:WordSection1;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]-->
</head>
<body lang="EN-US" link="#0563C1" vlink="#954F72" style="word-wrap:break-word">
<div class="WordSection1">
<div align="center">
<table class="MsoNormalTable" border="0" cellspacing="0" cellpadding="0" width="600" style="width:6.25in">
<tbody>
<tr>
<td style="padding:0in 0in 0in 0in">
<p class="MsoNormal" style="line-height:106%"><span style="font-size:13.5pt;line-height:106%;font-family:"Arial",sans-serif;color:black"><img width="599" height="171" style="width:6.2395in;height:1.7812in" id="Picture_x0020_2" src="cid:image002.png@01DBB395.F7E26530" alt="Dissertation Defense Announcement at the Cullen College of Engineering"></span><span style="font-size:13.5pt;line-height:106%;font-family:"Arial",sans-serif;color:black;mso-ligatures:none"><o:p></o:p></span></p>
<div align="center">
<table class="MsoNormalTable" border="0" cellspacing="0" cellpadding="0" style="background:white">
<tbody>
<tr>
<td style="padding:30.0pt 15.0pt 7.5pt 15.0pt">
<p class="MsoNormal" align="center" style="margin-bottom:3.75pt;text-align:center;mso-line-height-alt:15.0pt">
<b><span style="font-size:18.0pt;font-family:"Times New Roman",serif;color:#C8102E;mso-ligatures:none">Controlling Oxygen Speciation through Forced Dynamic Operation of Chemical Reactors During Ethane Oxidative Dehydrogenation
<br>
</span></b><b><span style="font-size:13.5pt;font-family:"Times New Roman",serif;color:black;mso-ligatures:none">Austin Morales</span></b><span style="font-size:13.5pt;font-family:"Times New Roman",serif;mso-ligatures:none"><o:p></o:p></span></p>
<p class="MsoNormal" align="center" style="text-align:center;line-height:16.5pt">
<span style="font-size:10.5pt;font-family:"Arial",sans-serif;color:black;mso-ligatures:none">April 24, 2025, 12 p.m. to 2 p.m. (CST)<br>
Location: Chemical Engineering Conference Room (S234), Engineering 1,</span><span style="font-size:10.5pt;font-family:"Arial",sans-serif;mso-ligatures:none"><o:p></o:p></span></p>
<p class="MsoNormal" align="center" style="text-align:center;line-height:16.5pt">
<span style="font-size:10.5pt;font-family:"Arial",sans-serif;color:black;mso-ligatures:none">Virtual Link:</span><span style="font-family:"Times New Roman",serif;color:black;mso-ligatures:none"><a href="https://urldefense.com/v3/__https://teams.microsoft.com/l/meetup-join/19*3ameeting_YWMxZGQxMjgtMjA0Zi00MmY4LTg4NGYtNzBiZWQwNjA3ZWMx*40thread.v2/0?context=*7b*22Tid*22*3a*22170bbabd-a2f0-4c90-ad4b-0e8f0f0c4259*22*2c*22Oid*22*3a*229c733efc-5f81-47e8-827a-27e961b4762d*22*7d__;JSUlJSUlJSUlJSUlJSUl!!LkSTlj0I!B4_ChALSPxvE_GkTuKQEpG97LywQbgCbx5pRW_wkPpEsA2sdatbQ26c1o2YQCRmJYxj-aRCwYGamrnlnu5pQgkPk1ng$" title="https://teams.microsoft.com/l/meetup-join/19%3ameeting_YWMxZGQxMjgtMjA0Zi00MmY4LTg4NGYtNzBiZWQwNjA3ZWMx%40thread.v2/0?context=%7b%22Tid%22%3a%22170bbabd-a2f0-4c90-ad4b-0e8f0f0c4259%22%2c%22Oid%22%3a%229c733efc-5f81-47e8-827a-27e961b4762d%22%7d"><span style="font-size:10.5pt;font-family:"Arial",sans-serif;color:#0563C1"> Austin
Morales Defense Link (TEAMS)</span></a></span><span style="font-size:10.5pt;font-family:"Arial",sans-serif;color:black;mso-ligatures:none">
</span><span style="font-size:10.5pt;font-family:"Arial",sans-serif;mso-ligatures:none"><o:p></o:p></span></p>
<p class="MsoNormal" align="center" style="margin-bottom:3.75pt;text-align:center;line-height:16.5pt">
<b><span style="font-size:10.5pt;font-family:"Arial",sans-serif;color:black;mso-ligatures:none">Committee Chair:</span></b><span style="font-size:10.5pt;font-family:"Arial",sans-serif;color:black;mso-ligatures:none"><br>
Dr. Michael Harold</span><span style="font-size:10.5pt;font-family:"Arial",sans-serif;mso-ligatures:none"><o:p></o:p></span></p>
<p class="MsoNormal" align="center" style="margin-bottom:3.75pt;text-align:center;line-height:16.5pt">
<b><span style="font-size:10.5pt;font-family:"Arial",sans-serif;color:black;mso-ligatures:none">Co-Committee Chair:</span></b><b><span style="font-size:10.5pt;font-family:"Arial",sans-serif;mso-ligatures:none"><o:p></o:p></span></b></p>
<p class="MsoNormal" align="center" style="margin-bottom:3.75pt;text-align:center;line-height:16.5pt">
<span style="font-size:10.5pt;font-family:"Arial",sans-serif;color:black;background:white;mso-ligatures:none">Dr. Praveen Bollini</span><span style="font-size:10.5pt;font-family:"Arial",sans-serif;mso-ligatures:none"><o:p></o:p></span></p>
<p class="MsoNormal" align="center" style="margin-bottom:15.0pt;text-align:center;line-height:16.5pt">
<b><span style="font-size:10.5pt;font-family:"Arial",sans-serif;color:black;mso-ligatures:none">Committee Members:</span></b><span style="font-size:10.5pt;font-family:"Arial",sans-serif;color:black;mso-ligatures:none"><br>
Dr. Lars Grabow | Dr. Phillip Christopher | Dr. Dionisios Vlachos </span><span style="font-size:10.5pt;font-family:"Arial",sans-serif;mso-ligatures:none"><o:p></o:p></span></p>
</td>
</tr>
<tr>
<td style="padding:0in 15.0pt 15.0pt 15.0pt">
<p class="MsoNormal" style="mso-margin-top-alt:11.25pt;margin-right:0in;margin-bottom:11.25pt;margin-left:0in;line-height:16.5pt">
<b><span style="font-family:"Arial",sans-serif;color:#C8102E;mso-ligatures:none">Abstract</span></b><span style="font-family:"Arial",sans-serif;color:#C8102E;mso-ligatures:none"><o:p></o:p></span></p>
<p class="MsoNormal" style="mso-margin-top-alt:11.3pt;margin-right:0in;margin-bottom:11.3pt;margin-left:0in;text-align:justify;line-height:106%">
<span style="font-size:10.5pt;line-height:106%;font-family:"Arial",sans-serif;color:black;mso-ligatures:none"> Selective catalytic selective oxidation processes are of longstanding interest as a means of synthesizing various commodity chemicals including
ethylene via oxidative dehydrogenation of ethane (ODHE). In 2023 alone, an estimated 166 million metric tons was manufactured boasting a total market value of $240 billion (USD). Currently, commercial ethylene production is carried out non-oxidatively through
steam cracking which is energy intensive due to its endothermicity. Conversely, exothermicity is one major advantage of the oxidative chemistry over the conventional endothermic non-oxidative pathway. However, oxygen’s presence often prompts oxidation beyond
the desired product (overoxidation) forming undesirable CO<sub>x</sub> (carbon dioxide, CO<sub>2</sub> and carbon monoxide, CO). Lower selectivity instituted by overoxidation pathways has motivated countless studies into their improvement via tailored materials
and reactor design including forced dynamic operation (FDO).<o:p></o:p></span></p>
<p class="MsoNormal" style="mso-margin-top-alt:11.3pt;margin-right:0in;margin-bottom:11.3pt;margin-left:0in;text-align:justify;line-height:106%">
<span style="font-size:10.5pt;line-height:106%;font-family:"Arial",sans-serif;color:black;mso-ligatures:none"> FDO has been of recent interest to enhance chemical reactor performance beyond what is achievable via conventional steady state operation (SSO).
During FDO, reactors are subjected to a feed oscillating between hydrocarbon (ethane) and oxidant (oxygen). It is hypothesized that FDO promotes reactions between the hydrocarbon and selective lattice oxygen while suppressing chemisorbed oxygen reliant unselective
pathways. Herein, through a combination of experiments, modeling, and theory, this work investigates the use of FDO as a strategy to control catalytically stored oxygen speciation and thus reactor performance during ODHE. <o:p></o:p></span></p>
<p class="MsoNormal" style="mso-margin-top-alt:11.3pt;margin-right:0in;margin-bottom:11.3pt;margin-left:0in;text-align:justify;line-height:106%">
<span style="font-size:10.5pt;line-height:106%;font-family:"Arial",sans-serif;color:black;mso-ligatures:none"> Comparisons between staple metal oxide catalysts including VO<sub>x</sub> and MoO<sub>x</sub> suggest that FDO selectivity enhancement is achievable
when unselective reactions are more sensitive to the modulated element (i.e. oxygen) than selective pathways. In fact, FDO can even reduce diffusion induced selectivity losses encountered within industrial sized (diffusion limited) catalyst pellets for reactions
in series, a predominant challenge faced during reactor scaleup. As a result, ethylene selectivity and yield during FDO are 14% and 7% higher (absolute) respectively than conventional SSO. Transient reactor modeling results indicate that selectivity gains
and conversion losses experienced during FDO are linked to the oxygen speciation and concentration respectively within the metal oxide catalyst which can be tuned via oscillation frequencies, amplitudes, and cycle averages. Linking reactor performance to composition,
kinetic and transport properties of prevalent metal oxide catalysts (VO<sub>x </sub>
and MoO<sub>x</sub>) during ODHE yields a generalized method to identify selective oxidation catalysts, chemistries, and operating conditions where FDO supersedes traditional SSO.<o:p></o:p></span></p>
</td>
</tr>
</tbody>
</table>
</div>
</td>
</tr>
<tr>
<td style="padding:0in 0in 0in 0in">
<p class="MsoNormal" style="line-height:106%"><span style="font-size:13.5pt;line-height:106%;font-family:"Arial",sans-serif;color:black"><img border="0" width="599" height="82" style="width:6.2395in;height:.8541in" id="Picture_x0020_1" src="cid:image003.png@01DBB395.F7E26530" alt="Engineered For What's Next"></span><span style="font-size:13.5pt;line-height:106%;font-family:"Arial",sans-serif;color:black;mso-ligatures:none"><o:p></o:p></span></p>
</td>
</tr>
</tbody>
</table>
</div>
<p class="MsoNormal"><span style="font-family:"Times New Roman",serif;mso-ligatures:none"><o:p> </o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt"><o:p> </o:p></span></p>
</div>
</body>
</html>