<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<meta name="Generator" content="Microsoft Word 15 (filtered medium)">
<!--[if !mso]><style>v\:* {behavior:url(#default#VML);}
o\:* {behavior:url(#default#VML);}
w\:* {behavior:url(#default#VML);}
.shape {behavior:url(#default#VML);}
</style><![endif]--><style><!--
/* Font Definitions */
@font-face
        {font-family:PMingLiU;
        panose-1:2 1 6 1 0 1 1 1 1 1;}
@font-face
        {font-family:"Cambria Math";
        panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
        {font-family:Calibri;
        panose-1:2 15 5 2 2 2 4 3 2 4;}
@font-face
        {font-family:"Albertus Extra Bold";}
@font-face
        {font-family:"\@PMingLiU";
        panose-1:2 1 6 1 0 1 1 1 1 1;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
        {margin:0in;
        font-size:11.0pt;
        font-family:"Calibri",sans-serif;
        mso-ligatures:standardcontextual;}
span.EmailStyle17
        {mso-style-type:personal-compose;
        font-family:"Calibri",sans-serif;
        color:windowtext;}
.MsoChpDefault
        {mso-style-type:export-only;
        font-size:11.0pt;}
@page WordSection1
        {size:8.5in 11.0in;
        margin:1.0in 1.0in 1.0in 1.0in;}
div.WordSection1
        {page:WordSection1;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]-->
</head>
<body lang="EN-US" link="#0563C1" vlink="#954F72" style="word-wrap:break-word">
<div class="WordSection1">
<p class="MsoNormal"><span style="mso-ligatures:none;mso-fareast-language:ZH-TW"><o:p> </o:p></span></p>
<div align="center">
<table class="MsoNormalTable" border="0" cellspacing="0" cellpadding="0" width="600" style="width:6.25in">
<tbody>
<tr>
<td style="padding:0in 0in 0in 0in">
<p class="MsoNormal" style="line-height:115%"><span style="font-size:13.5pt;line-height:115%;font-family:"Arial",sans-serif;color:black"><img width="600" height="171" style="width:6.25in;height:1.7812in" id="Picture_x0020_1" src="cid:image001.png@01DB355A.33E4C100" alt="Dissertation Defense Announcement at the Cullen College of Engineering"></span><span style="font-size:13.5pt;line-height:115%;font-family:"Arial",sans-serif;color:black;mso-ligatures:none"><o:p></o:p></span></p>
<div align="center">
<table class="MsoNormalTable" border="0" cellspacing="0" cellpadding="0" style="background:white">
<tbody>
<tr>
<td style="padding:30.0pt 15.0pt 7.5pt 15.0pt">
<p class="MsoNormal" align="center" style="text-align:center;mso-line-height-alt:16.5pt">
<b><span style="font-size:18.0pt;font-family:"Times New Roman",serif;color:#C8102E;mso-ligatures:none">Scalable Synthesis and Separation Performance of Covalent Organic Framework and Contorted Polyamide Membranes</span></b><span style="font-size:12.0pt;font-family:"Times New Roman",serif;mso-ligatures:none"><o:p></o:p></span></p>
<p class="MsoNormal" align="center" style="text-align:center;line-height:15.0pt">
<b><span style="font-size:13.5pt;font-family:"Times New Roman",serif;mso-ligatures:none"><o:p> </o:p></span></b></p>
<p class="MsoNormal" align="center" style="text-align:center;line-height:15.0pt">
<b><span style="font-size:13.5pt;font-family:"Times New Roman",serif;color:black;mso-ligatures:none">Parisa Taheri</span></b><span style="font-size:13.5pt;font-family:"Times New Roman",serif;mso-ligatures:none"><o:p></o:p></span></p>
<p class="MsoNormal" align="center" style="text-align:center;line-height:16.5pt">
<span style="font-size:10.5pt;font-family:"Arial",sans-serif;color:black;mso-ligatures:none">November 18<sup>th</sup>, 2024; 1:00 PM - 3:00 PM (CST)<br>
Location: Room 320 Agrawal Eng. Research Bldg. </span><span style="font-size:10.5pt;font-family:"Arial",sans-serif;mso-ligatures:none"><o:p></o:p></span></p>
<p class="MsoNormal" align="center" style="margin-bottom:3.75pt;text-align:center;line-height:16.5pt">
<b><span style="font-size:10.5pt;font-family:"Arial",sans-serif;color:black;mso-ligatures:none">Committee Chair:</span></b><span style="font-size:10.5pt;font-family:"Arial",sans-serif;color:black;mso-ligatures:none"><br>
Devin L. Shaffer, Ph.D.</span><span style="font-size:10.5pt;font-family:"Arial",sans-serif;mso-ligatures:none"><o:p></o:p></span></p>
<p class="MsoNormal" align="center" style="margin-bottom:15.0pt;text-align:center;line-height:16.5pt">
<b><span style="font-size:10.5pt;font-family:"Arial",sans-serif;color:black;mso-ligatures:none">Committee Members:</span></b><span style="font-size:10.5pt;font-family:"Arial",sans-serif;color:black;mso-ligatures:none"><br>
Stacey M. Louie, Ph.D. | Mim Rahimi, Ph.D. | Haleh Ardebili, Ph.D. | Praveen Bollini, Ph.D.
</span><span style="font-size:10.5pt;font-family:"Arial",sans-serif;mso-ligatures:none"><o:p></o:p></span></p>
</td>
</tr>
<tr>
<td style="padding:0in 15.0pt 15.0pt 15.0pt">
<p class="MsoNormal" style="mso-margin-top-alt:11.25pt;margin-right:0in;margin-bottom:11.25pt;margin-left:0in;line-height:16.5pt">
<b><span style="font-size:12.0pt;font-family:"Arial",sans-serif;color:#C8102E;mso-ligatures:none">Abstract</span></b><span style="font-size:12.0pt;font-family:"Arial",sans-serif;color:#C8102E;mso-ligatures:none"><o:p></o:p></span></p>
<p class="MsoNormal" style="mso-margin-top-alt:11.25pt;margin-right:0in;margin-bottom:11.25pt;margin-left:0in;text-align:justify;line-height:16.5pt">
<span style="font-size:10.5pt;font-family:"Arial",sans-serif;color:black;mso-ligatures:none">Separation processes are imperative to industries including chemical manufacturing, resource recovery and product purification. Conventional separation processes like
distillation and solvent extraction are energy and chemical intensive with large environmental footprints. Membrane separation processes are an environmentally friendly alternative to conventional processes due to their higher energy efficiency and precise
separation capability. Nanofiltration (NF) is used to separate relatively small molecules like pharmaceuticals and colorants using nanoporous membranes. Reverse osmosis (RO) separates smaller constituents like ions and sugars from solvents using non-porous
dense polymeric membranes. Both NF and RO membranes are commonly thin film composites (TFC) made via interfacial polymerization. Covalent organic framework (COF) based TFC membranes are a new class of membrane materials ideal for NF applications, and specifically
organic solvent nanofiltration (OSN), because of their crystalline, highly porous structures and chemical and thermal stability. Contorted polyamide TFC membranes are also a new class of polymeric membranes suitable for enhanced RO water desalination due to
their increased free volume resulting from sterically hindered monomer structures. COF and contorted polyamide membranes show great promise for achieving superior permeability and selectivity compared to commercially available counterparts, but their industrial
scale application is hindered by small scale synthesis approaches. Moreover, transport in these membranes is not well understood beyond the conventional pore-flow and solution-diffusion models, which limits their performance predictability in challenge separation
processes. To address these critical research gaps, this dissertation investigates the OSN performance of COF membranes by correlating the physicochemical properties of membrane to that of organic solvents based on membrane-solvent interactions. Second, a
novel scalable approach for synthesis of COF membranes at large scale is introduced, and the resulting COF membranes are shown to perform similarly to COF membranes made using conventional methods. Lastly, large scale synthesis of contorted polyamide membranes
is demonstrated, and the physicochemical characteristics and desalination performance of these membranes are evaluated. Results of this work show superior permselectivity for contorted polyamide membranes compared to conventional polyamide membranes due to
their increased free volume. A solution-friction model is applied to describe transport in these membranes and to explain changes in membrane free volume and desalination performance due to compaction.</span><span style="font-size:10.5pt;font-family:"Arial",sans-serif;mso-ligatures:none"><o:p></o:p></span></p>
</td>
</tr>
</tbody>
</table>
</div>
</td>
</tr>
</tbody>
</table>
</div>
<p class="MsoNormal" align="center" style="text-align:center;page-break-after:avoid">
<b><span style="font-size:16.0pt;font-family:"Albertus Extra Bold";color:#1F497D;mso-ligatures:none;mso-fareast-language:ZH-TW"><o:p> </o:p></span></b></p>
<p class="MsoNormal"><o:p> </o:p></p>
</div>
</body>
</html>