<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<meta name="Generator" content="Microsoft Word 15 (filtered medium)">
<!--[if !mso]><style>v\:* {behavior:url(#default#VML);}
o\:* {behavior:url(#default#VML);}
w\:* {behavior:url(#default#VML);}
.shape {behavior:url(#default#VML);}
</style><![endif]--><style><!--
/* Font Definitions */
@font-face
        {font-family:"Cambria Math";
        panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
        {font-family:Calibri;
        panose-1:2 15 5 2 2 2 4 3 2 4;}
@font-face
        {font-family:Aptos;}
@font-face
        {font-family:Roboto;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
        {margin:0in;
        font-size:11.0pt;
        font-family:"Calibri",sans-serif;
        mso-ligatures:standardcontextual;}
span.EmailStyle17
        {mso-style-type:personal-compose;
        font-family:"Calibri",sans-serif;
        color:windowtext;}
.MsoChpDefault
        {mso-style-type:export-only;
        font-size:11.0pt;}
@page WordSection1
        {size:8.5in 11.0in;
        margin:1.0in 1.0in 1.0in 1.0in;}
div.WordSection1
        {page:WordSection1;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]-->
</head>
<body lang="EN-US" link="#0563C1" vlink="#954F72" style="word-wrap:break-word">
<div class="WordSection1">
<div align="center">
<table class="MsoNormalTable" border="0" cellspacing="0" cellpadding="0" width="600" style="width:6.25in">
<tbody>
<tr>
<td style="padding:0in 0in 0in 0in">
<p class="MsoNormal"><span style="font-size:13.5pt;font-family:"Arial",sans-serif;color:black;mso-ligatures:none"><img width="600" height="171" style="width:6.25in;height:1.7812in" id="_x0000_i1037" src="https://www.egr.uh.edu/sites/www.egr.uh.edu/files/enews/2022/images/dissertation1.png" alt="Dissertation Defense Announcement at the Cullen College of Engineering"><o:p></o:p></span></p>
<div align="center">
<table class="MsoNormalTable" border="0" cellspacing="0" cellpadding="0" style="background:white">
<tbody>
<tr>
<td style="padding:30.0pt 15.0pt 7.5pt 15.0pt">
<p class="MsoNormal" align="center" style="margin-bottom:8.0pt;text-align:center;line-height:106%">
<b><span style="font-size:14.0pt;line-height:106%;font-family:"Aptos",sans-serif;color:#C8102E;mso-ligatures:none">Towards Fast and Robust Emerging Neural Networks</span></b><span style="font-family:"Aptos",sans-serif;color:#C8102E;mso-ligatures:none"><o:p></o:p></span></p>
<p class="MsoNormal" align="center" style="text-align:center;line-height:15.0pt">
<b><span style="font-size:13.5pt;font-family:"Aptos",sans-serif;color:black;mso-ligatures:none">Manojna Sistla</span></b><span style="font-size:13.5pt;font-family:"Aptos",sans-serif;mso-ligatures:none"><o:p></o:p></span></p>
<p class="MsoNormal" align="center" style="margin-bottom:3.75pt;text-align:center;line-height:16.5pt">
<span style="font-size:10.5pt;font-family:"Arial",sans-serif;color:black;mso-ligatures:none">November 18, 2024; 9 a.m. - 10:30 a.m. (CST)<br>
Zoom: </span><span style="font-size:10.5pt;font-family:Roboto;color:#3C4043;letter-spacing:.15pt;mso-ligatures:none"><a href="https://urldefense.com/v3/__https:/uh-edu-cougarnet.zoom.us/j/3959794030__;!!LkSTlj0I!A4kN_wAMjA2tKuIvwx50KSGcE4pISqNDY2l8ywCzNXz3pR-eXwB_2eiT_cU_jmmc94ExD4vQwFthsp3TcXISLERTsPaukZE$"><span style="color:blue">https://uh-edu-cougarnet.zoom.us/j/3959794030</span></a></span><span style="font-size:10.5pt;font-family:"Arial",sans-serif;mso-ligatures:none"><o:p></o:p></span></p>
<p class="MsoNormal" align="center" style="margin-bottom:3.75pt;text-align:center;line-height:16.5pt">
<b><span style="font-size:10.5pt;font-family:"Arial",sans-serif;color:black;mso-ligatures:none">Committee Chair:</span></b><span style="font-size:10.5pt;font-family:"Arial",sans-serif;color:black;mso-ligatures:none"><br>
Xin Fu, Ph.D.</span><span style="font-size:10.5pt;font-family:"Arial",sans-serif;mso-ligatures:none"><o:p></o:p></span></p>
<p class="MsoNormal" align="center" style="margin-bottom:15.0pt;text-align:center;line-height:16.5pt">
<b><span style="font-size:10.5pt;font-family:"Arial",sans-serif;color:black;mso-ligatures:none">Committee Members:</span></b><span style="font-size:10.5pt;font-family:"Arial",sans-serif;color:black;mso-ligatures:none"><br>
Jinghong Chen, Ph.D. | Miao Pan, Ph.D. | Xuqing Wu, Ph.D. | Renjie Hu, Ph.D.</span><span style="font-size:10.5pt;font-family:"Arial",sans-serif;mso-ligatures:none"><o:p></o:p></span></p>
</td>
</tr>
<tr>
<td style="padding:0in 15.0pt 15.0pt 15.0pt">
<p class="MsoNormal" style="mso-margin-top-alt:11.25pt;margin-right:0in;margin-bottom:11.25pt;margin-left:0in;line-height:16.5pt">
<b><span style="font-size:12.0pt;font-family:"Arial",sans-serif;color:#C8102E;mso-ligatures:none">Abstract</span></b><span style="font-size:12.0pt;font-family:"Arial",sans-serif;color:#C8102E;mso-ligatures:none"><o:p></o:p></span></p>
<p class="MsoNormal" style="margin-bottom:8.0pt;text-align:justify;line-height:106%">
<span style="font-family:"Aptos",sans-serif;color:black;mso-ligatures:none">Neural networks(NNs) are foundational to next-generation artificial intelligence, driving revolutionary advancements across diverse fields such as computer vision, healthcare, finance,
and autonomous driving. However, the widespread adoption of these models introduces several significant challenges. Real-time applications, in particular, demand stringent adherence to execution delays and power consumption constraints, without compromising
reliability. Furthermore, the increased deployment of neural networks has attracted malicious users, resulting in threats such as model disruption and theft of sensitive training data. This dissertation addresses these critical challenges within emerging neural
network paradigms in computer vision, specifically focusing on quantum neural networks (QNNs), object detection models, and vision transformers.</span><span style="font-family:"Aptos",sans-serif;mso-ligatures:none"><o:p></o:p></span></p>
<p class="MsoNormal" style="margin-bottom:8.0pt;text-align:justify;line-height:106%">
<span style="font-family:"Aptos",sans-serif;color:black;mso-ligatures:none">NNs have become integral to computer vision, powering key applications like facial recognition, image classification, and autonomous driving. The drive for higher accuracy and efficiency
has spurred a steady flow of new, advanced models, each pushing the boundaries of what’s possible in these fields. Among the latest innovations are quantum neural networks (QNNs), which leverage rapid advancements in quantum computing—a new computational paradigm
that uses principles of quantum mechanics to solve complex problems at remarkable speeds. These systems can handle tasks that traditional computers would find nearly impossible to complete within a practical timeframe. Early results with QNNs on current quantum
hardware are promising, showing that they could potentially outperform conventional neural networks in both speed and computational power. Simultaneously, conventional neural network architectures have made substantial strides in performance. Convolutional
neural networks (CNNs), especially the YOLO models, remain the preferred choice for object detection tasks due to their high performance and accuracy. Recently, transformer-based neural networks have gained traction for their ability to excel in both natural
language and image processing through the self-attention mechanism, which captures global features of the images effectively, thereby producing superior results compared to the CNNs.</span><span style="font-family:"Aptos",sans-serif;mso-ligatures:none"><o:p></o:p></span></p>
<p class="MsoNormal" style="margin-bottom:8.0pt;text-align:justify;line-height:106%">
<span style="font-family:"Aptos",sans-serif;color:black;mso-ligatures:none">This dissertation investigates the performance limitations and security vulnerabilities inherent in these emerging neural network models. We propose methodologies to enhance their robustness,
efficiency, and resilience to attacks, with particular emphasis on computer vision applications. Additionally, we outline potential directions for future research to further improve the reliability and effectiveness of neural networks in real-world applications.</span><span style="font-family:"Aptos",sans-serif;mso-ligatures:none"><o:p></o:p></span></p>
</td>
</tr>
</tbody>
</table>
</div>
</td>
</tr>
<tr>
<td style="padding:0in 0in 0in 0in">
<p class="MsoNormal"><span style="font-size:13.5pt;font-family:"Arial",sans-serif;color:black;mso-ligatures:none"><img border="0" width="600" height="82" style="width:6.25in;height:.8541in" id="_x0000_i1038" src="https://www.egr.uh.edu/sites/www.egr.uh.edu/files/enews/2022/images/dissertation2.png" alt="Engineered For What's Next"><o:p></o:p></span></p>
</td>
</tr>
</tbody>
</table>
</div>
<p class="MsoNormal"><span style="font-size:12.0pt;font-family:"Aptos",sans-serif;mso-ligatures:none"><br clear="all">
<o:p></o:p></span></p>
<p class="MsoNormal"><o:p> </o:p></p>
</div>
</body>
</html>