<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<style type="text/css" style="display:none;"> P {margin-top:0;margin-bottom:0;} </style>
</head>
<body dir="ltr">
<div style="font-family: Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);" class="elementToProof">
<br>
</div>
<div>
<div dir="ltr">
<div dir="ltr">
<div>
<div dir="ltr" class="x_gmail_signature">
<div dir="ltr">
<div><font face="arial, helvetica, sans-serif" style="color: rgb(0, 0, 0);"><br>
</font></div>
<div>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="600" style="font-family: Arial, sans-serif; background-color: rgb(255, 255, 255);">
<tbody>
<tr>
<td><img alt="image005.jpg" width="600" height="168" class="x_gmail-CToWUd x_gmail-a6T" tabindex="0" style="outline:0px; margin-right:0px" data-outlook-trace="F:1|T:1" src="cid:ii_lndffke01"><span class="x_gmail-im" style="color: rgb(80, 0, 80);"><br>
<table align="center" border="0" cellpadding="10" cellspacing="0" style="background-color: rgb(255, 255, 255);">
<tbody>
<tr>
<td align="center" style="padding:40px 20px 10px">
<div style="font-size: 24px; line-height: 28px; color: rgb(200, 16, 46);"><strong>Deep Learning Enhanced Multi-physics Joint Inversion</strong></div>
<div style="margin:30px 0px; line-height:20px">
<div style="font-size:18px; margin-bottom:5px"><strong><font style="color: rgb(0, 0, 0);">Yanyan Hu</font></strong></div>
<div style="line-height:20px">
<p style="line-height:22px; margin:0px 0px 5px"><font face="Arial, Helvetica, sans-serif" style="font-size: 14px; color: rgb(0, 0, 0);">October 11, 2023; 12:00 PM - 2:00 PM (CST)</font><br>
<font style="color: rgb(0, 0, 0);"><font face="Arial, Helvetica, sans-serif" style="font-size:14px">Location: N328 Eng Bld 1</font><br>
</font><font face="Arial, Helvetica, sans-serif" style="font-size:14px"><font style="color: rgb(0, 0, 0);">Zoom:</font> </font><a href="https://urldefense.com/v3/__https://zoom.us/j/5222245945__;!!LkSTlj0I!AG41baF_rMb4RkWr3ZWkYpRa9y9n14lU4sPC1ngcnJU5stSvCspS2VilzoQgha5gVGMZaTba4O8dtBe_ub-VeA$" data-auth="NotApplicable" style="text-align:start" id="OWA99889a9c-8889-ffb9-6859-3353f9e32c9a" class="OWAAutoLink"><font face="arial, sans-serif">https://zoom.us/j/5222245945</font></a></p>
</div>
</div>
<div style="font-size:14px; line-height:20px">
<p style="font-family:Arial,Helvetica,sans-serif; line-height:22px; margin:0px 0px 5px">
<font style="color: rgb(0, 0, 0);"><strong>Committee Chair:</strong><br>
Jiefu Chen, Ph.D.<br>
</font></p>
</div>
<div style="font-size:14px; line-height:20px">
<p style="font-family:Arial,Helvetica,sans-serif; line-height:22px; margin:0px 0px 20px">
<font style="color: rgb(0, 0, 0);"><strong>Committee Members:</strong><br>
Xuqing Wu, Ph.D. | Zhu Han, Ph.D. | David Jackson, Ph.D. | Wenyi Hu, Ph.D.</font></p>
</div>
</td>
</tr>
<tr>
<td style="padding:0px 20px 20px">
<p style="font-family: Arial, Helvetica, sans-serif; font-size: 16px; line-height: 22px; margin: 15px 0px; color: rgb(200, 16, 46);">
<strong>Abstract</strong></p>
<p style="font-family:Arial,Helvetica,sans-serif; font-size:14px; line-height:22px; margin:15px 0px">
<font style="color: rgb(0, 0, 0);"> Joint inversion has drawn considerable attention due to the availability of multiple geophysical datasets, ever-increasing computational resources, the development of advanced algorithms, and its ability to reduce inversion
uncertainty. A key issue of joint inversion is to develop effective strategies to link different geophysical data in a unified mathematical framework, where the information obtained from different models can complement each other. Traditionally, structural
similarity constraints are pursued by joint inversion algorithms using manually crafted formulations (e.g. cross gradient). In this dissertation, we introduce a novel approach: a Deep Learning Enhanced (DLE) joint inversion framework. Within this framework,
structural similarity is enforced using a well-trained deep neural network (DNN), enhancing the quality of joint inversion results through iterative improvements. The DNN is seamlessly integrated into existing independent inversion workflows, with the flexibility
to extend its application to various multi-physics scenarios without requiring structural modifications.</font></p>
<p style="font-family:Arial,Helvetica,sans-serif; font-size:14px; line-height:22px; margin:15px 0px">
<font style="color: rgb(0, 0, 0);">Within the DLE joint inversion framework, several key contributions are made. First, we design a double-channel U-Net for the simultaneous inversion of 2D DC resistivity data and seismic travel time. Extensive numerical experiments
validate the efficacy of this method. Importantly, this learning-based approach exhibits impressive generalization capabilities when applied to datasets featuring diverse geological structures, sensing configurations, and nonconforming discretization. Second,
we harness the power of deep perceptual loss as a regularization technique to further enhance structural similarity. Successive networks are trained with deep perceptual constraints, derived from a pre-trained network specializing in edge detection. The robustness
of this approach is verified through experiments involving layered subsurface models, demonstrating its ability to jointly invert three types of geophysical data, including induced polarization data.<br>
Third, we simplify the DLE framework and apply it to tackle the challenging 3D joint inversion of magnetic and gravity gradient data. The proposed method is rigorously evaluated through synthetic and field cases, affirming its effectiveness and computational
efficiency. In summary, this dissertation contributes to the advancement of multi-physics joint inversion by introducing the Deep Learning Enhanced framework. This innovative approach enhances both the accuracy and efficiency of geophysical inversion, promising
broader applications and improved outcomes in the field.</font><br>
</p>
</td>
</tr>
</tbody>
</table>
</span></td>
</tr>
<tr>
<td class="elementToProof"><img alt="Engineered For What's Next" width="600" height="82" class="x_gmail-CToWUd" src="https://www.egr.uh.edu/sites/www.egr.uh.edu/files/enews/2022/images/dissertation2.png"></td>
</tr>
</tbody>
</table>
</div>
</div>
</div>
</div>
</div>
<div class="x_gmail_quote">
<blockquote class="x_gmail_quote" style="margin:0px 0px 0px 0.8ex; border-left:1px solid rgb(204,204,204); padding-left:1ex">
<div class="x_msg1372467766804845065">
<div dir="ltr">
<blockquote style="margin:0px 0px 0px 0.8ex; border-left:1px solid rgb(204,204,204); padding-left:1ex">
<div dir="ltr">
<div dir="ltr">
<div dir="ltr">
<div></div>
</div>
</div>
</div>
</blockquote>
</div>
</div>
</blockquote>
</div>
</div>
</div>
</body>
</html>