<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<style type="text/css" style="display:none;"> P {margin-top:0;margin-bottom:0;} </style>
</head>
<body dir="ltr">
<div style="font-family: Calibri, Arial, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0); background-color: rgb(255, 255, 255);" class="elementToProof">
<br>
</div>
<div id="divRplyFwdMsg" dir="ltr">
<div>&nbsp;</div>
</div>
<div>
<div dir="ltr">
<table align="center" bgcolor="#fff" border="0" cellpadding="0" cellspacing="0" width="600" style="color:rgb(0,0,0); font-family:Arial,sans-serif; font-size:medium">
<tbody>
<tr>
<td><img alt="Dissertation Defense Announcement at the Cullen College of Engineering" width="600" height="171" src="https://www.egr.uh.edu/sites/www.egr.uh.edu/files/enews/2022/images/dissertation1.png">
<table align="center" bgcolor="#ffffff" border="0" cellpadding="10" cellspacing="0">
<tbody>
<tr>
<td align="center" style="padding:40px 20px 10px">
<div style="font-size:24px; color:rgb(200,16,46); line-height:28px"><strong>Single-Crystalline III-N Film Growth for Photonic, Electronic, Sensing, and Energy Harvesting Applications</strong></div>
<div style="margin:30px 0px; line-height:20px">
<div style="font-size:18px; margin-bottom:5px"><strong>Mina Moradnia</strong></div>
<div style="font-size:14px; line-height:20px">
<p style="font-family:Arial,Helvetica,sans-serif; line-height:22px; margin:0px 0px 5px">
November 6, 2022; 2:00 PM - 4:00 PM (CST)<br>
<span style="color:rgb(34,34,34)">Location: Mechanical Engineering Conference Room (Eng 1, #202)</span>&nbsp;<br>
Zoom:&nbsp;<a href="https://urldefense.com/v3/__https://uh-edu-cougarnet.zoom.us/j/91234970981?pwd=Y3gzZXEyMkxsTlJjN29Ic2VnNm1DUT09__;!!LkSTlj0I!FBF32DGHzLDtQCcjX9vXAlO_J_EZnSO46inWdP4wOumZdENzzc2PysoneIocfAADDdgFddwoS1MDz0rPwV5GmLfx$" data-auth="NotApplicable" style="font-size:small; text-align:start">https://uh-edu-cougarnet.zoom.us/j/91234970981?pwd=Y3gzZXEyMkxsTlJjN29Ic2VnNm1DUT09</a></p>
</div>
</div>
<div style="font-size:14px; line-height:20px">
<p style="font-family:Arial,Helvetica,sans-serif; line-height:22px; margin:0px 0px 5px">
<strong>Committee Chair:</strong><br>
Jae-Hyun&nbsp;Ryou, Ph.D.</p>
</div>
<div style="font-size:14px; line-height:20px">
<p style="font-family:Arial,Helvetica,sans-serif; line-height:22px; margin:0px 0px 20px">
<strong>Committee Members:</strong><br>
Haleh Ardebili, Ph.D. | Jiming Bao, Ph.D. | Rebecca Forrest, Ph.D. | Tian Chen, Ph.D.</p>
</div>
</td>
</tr>
<tr>
<td style="padding:0px 20px 20px">
<p style="font-family:Arial,Helvetica,sans-serif; font-size:16px; line-height:22px; margin:15px 0px; color:rgb(200,16,46)">
<strong>Abstract</strong></p>
<p class="x_MsoNormal" style="margin:0in; text-align:justify; text-indent:0.25in">
<font face="arial, sans-serif" size="2" style=""><span style="background-image:initial; background-position:initial; background-size:initial; background-repeat:initial; background-origin:initial; background-clip:initial">The flexible platform will be the next
 generation of electronic devices for the growing demand of the industry.&nbsp;</span><span style="text-align:start">Current flexible devices are made by the deposition of non-single-crystal thin films on flexible substrates or by the layer transfer of single-crystal
 thin films onto secondary flexible substrates, which result in low performance devices or complicated fabrication processes, respectively. We develop a process for direct deposition of single-crystal-like semiconductor films on flexible substrates to achieve
 high-performance flexible devices using simple fabrication processes. For the transfer-free direct deposition of flexible III-N films, we demonstrated high-crystalline-quality aluminum nitride (AlN) and gallium nitride (GaN) on a flexible copper (Cu) foil/tape
 using graphene as an intermediate seed layer. Graphene and AlN were directly grown by chemical vapor deposition and DC reactive magnetron sputtering, respectively, to achieve a highly-textured AlN film in both&nbsp;<i>a</i>- and&nbsp;<i>c</i>-crystallographic directions.
 Then, a single-crystal-like GaN layer was grown by metalorganic chemical vapor deposition (MOCVD) on the AlN buffer layer. The proposed method enables continuous roll-to-roll process for device fabrication, bringing economic advantages to the semiconductor
 technology with low-cost and large-scale&nbsp;</span><span style="text-align:start">manufacturing capability. In addition,&nbsp;</span><span style="text-align:start">group IIIa-N materials, such as AlN and GaN thin films, draw increasing attention in piezoelectric applications
 due to their exceptional properties of high-temperature stability, spontaneous electric polarization, low dielectric permittivity, high sound velocity, efficient transduction, and high stiffness</span><span style="text-align:start">. However, the piezoelectric
 coefficients and the resulting electromechanical coupling factors (<i>k<sub>t</sub></i><sup>2</sup>) of III-N materials are relatively low as compared to those of currently dominant piezoelectric materials such as lead zirconate titanate</span><span style="text-align:start">.&nbsp;</span><span style="text-align:start">Transition-metal-alloyed
 III-V nitride thin films cause significant impact on the enhancement of the piezoelectric properties in group-IIIa-N (III-N) films, such as wurtzite AlN, by group-IIIb transition metals. Therefore, we focus on a new&nbsp;<span style="background-image:initial; background-position:initial; background-size:initial; background-repeat:initial; background-origin:initial; background-clip:initial"></span><span style="color:rgb(34,34,34); background-image:initial; background-position:initial; background-size:initial; background-repeat:initial; background-origin:initial; background-clip:initial">Hybrid
 Chemical Vapor (HybCVD) thin film growth method&nbsp;</span></span><span style="background-image:initial; background-position:initial; background-size:initial; background-repeat:initial; background-origin:initial; background-clip:initial"><span style="text-align:start">along
 with theoretically study the thermodynamics of (1) precursor reaction chemistry and (2) solid-phase formation of ScAlN, YGaN, and YAlN in different parts of source zones and mixing/growth zone.</span><span style="text-align:start">&nbsp;</span><span style="text-align:start">The
 combination of MOCVD and HVPE growth methods simultaneously provides good control on the uniformity and quality of piezoelectric films based on transition-metal-alloyed III-N materials.</span></span></font></p>
<p class="x_MsoNormal" style="margin:0in; text-align:justify; text-indent:0.25in; font-size:12pt; font-family:&quot;Times New Roman&quot;,serif">
<span style="font-size:10.5pt; font-family:Arial,sans-serif; background-image:initial; background-position:initial; background-size:initial; background-repeat:initial; background-origin:initial; background-clip:initial">&nbsp;</span></p>
<p style="font-family:Arial,Helvetica,sans-serif; font-size:14px; line-height:22px; margin:15px 0px">
</p>
<p class="x_MsoNormal" style="margin:0in; text-align:justify; text-indent:0.25in; font-size:12pt; font-family:&quot;Times New Roman&quot;,serif">
<span style="font-size:10.5pt; font-family:Arial,sans-serif">&nbsp;</span></p>
</td>
</tr>
</tbody>
</table>
</td>
</tr>
<tr>
<td><img alt="Engineered For What's Next" width="600" height="82" src="https://www.egr.uh.edu/sites/www.egr.uh.edu/files/enews/2022/images/dissertation2.png"></td>
</tr>
</tbody>
</table>
</div>
</div>
</body>
</html>