<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
</head>
<body>
<div dir="ltr">
<div></div>
<div>
<div dir="ltr"><br>
</div>
</div>
<div id="id-302fa8e9-1426-46a9-9e87-2a0f44b30c39" class="ms-outlook-mobile-reference-message">
<div id="divRplyFwdMsg" dir="ltr"><font face="Calibri, sans-serif">
<div>&nbsp;</div>
</font></div>
<div dir="ltr">
<table align="center" bgcolor="#fff" border="0" cellpadding="0" cellspacing="0" width="600" style="color:rgb(0,0,0); font-family:Arial,sans-serif; font-size:medium">
<tbody>
<tr>
<td><img src="https://www.egr.uh.edu/sites/www.egr.uh.edu/files/enews/2022/images/dissertation1.png" alt="Dissertation Defense Announcement at the Cullen College of Engineering" width="600" height="171">
<table align="center" bgcolor="#ffffff" border="0" cellpadding="10" cellspacing="0">
<tbody>
<tr>
<td align="center" style="padding:40px 20px 10px">
<div style="font-size:24px; color:rgb(200,16,46); line-height:28px">Manipulating Scattering and Absorption to Enable Super-resolved Deconvolution in Emerging Tissue Imaging Methods<strong><br>
</strong></div>
<div style="margin-top:5px; line-height:22px"><br>
</div>
<div style="margin:30px 0px; line-height:20px">
<div style="font-size:18px; margin-bottom:5px">Dilani Gunawardhana<br>
</div>
<div style="font-size:14px; line-height:20px">
<p style="font-family:Arial,Helvetica,sans-serif; line-height:22px; margin:0px 0px 5px">
August 1, 2022; 2:00 PM - 4:00 PM (CST)<br>
<br>
</p>
<p style="font-family:Arial,Helvetica,sans-serif; line-height:22px; margin:0px 0px 5px">
Location<span style="color:rgb(34,34,34); font-family:&quot;Times New Roman&quot;,serif; font-size:14.6667px">:&nbsp;</span>N325 Eng Bld 1<br>
</p>
</div>
</div>
<div style="font-size:14px; line-height:20px">
<p style="font-family:Arial,Helvetica,sans-serif; line-height:22px; margin:0px 0px 5px">
<strong>Committee Chair:</strong><br>
David Mayerich, Ph.D.<br>
</p>
</div>
<div style="font-size:14px; line-height:20px">
<p style="font-family:Arial,Helvetica,sans-serif; line-height:22px; margin:0px 0px 20px">
<strong>Committee Members:</strong><br>
Badri Roysam, Ph.D. | Paul Ruchhoeft, Ph.D. | Rohith Reddy, Ph.D. | Jason Eriksen, Ph.D.</p>
</div>
</td>
</tr>
<tr>
<td style="padding:0px 20px 20px">
<p style="font-family:Arial,Helvetica,sans-serif; font-size:16px; line-height:22px; margin:15px 0px; color:rgb(200,16,46)">
<strong>Abstract</strong></p>
<p class="MsoNormal" style="background-image:initial; background-position:initial; background-size:initial; background-repeat:initial; background-origin:initial; background-clip:initial; margin:0in 0in 8pt; line-height:107%; font-family:Calibri,sans-serif">
<font size="2"><span style="line-height:107%; font-family:Arial,sans-serif; background-image:initial; background-position:initial; background-size:initial; background-repeat:initial; background-origin:initial; background-clip:initial">Biological tissue is inherently
 a three-dimensional structure.</span><span role="presentation" style="box-sizing:border-box">
</span><span role="presentation" style="box-sizing:border-box">Therefore, detailed biological investigations require three-dimensional imaging of cells and tissue&nbsp;</span><span style="line-height:107%; font-family:Arial,sans-serif"><span style="background-image:initial; background-position:initial; background-size:initial; background-repeat:initial; background-origin:initial; background-clip:initial"><span role="presentation" style="box-sizing:border-box">microstructures.</span><span role="presentation" style="box-sizing:border-box">
</span><span role="presentation" style="box-sizing:border-box">Given the limitations in traditional light microscopy and a lack&nbsp;</span></span><span style="background-image:initial; background-position:initial; background-size:initial; background-repeat:initial; background-origin:initial; background-clip:initial"><span role="presentation" style="box-sizing:border-box">of
 photostable labeling, multiplexed imaging of biological molecules with high precision is difficult to achieve.</span><span role="presentation" style="box-sizing:border-box">
</span><span role="presentation" style="box-sizing:border-box">While recent advances in super-resolution microscopy&nbsp;</span></span><span style="background-image:initial; background-position:initial; background-size:initial; background-repeat:initial; background-origin:initial; background-clip:initial"><span role="presentation" style="box-sizing:border-box">(SRM)
 address some of the limitations associated with conventional optical imaging, they impose severe limitations on acquisition speed and are technically challenging. Expansion microscopy (ExM) is a recent development in SRM that enables&nbsp;</span></span><span style="background-image:initial; background-position:initial; background-size:initial; background-repeat:initial; background-origin:initial; background-clip:initial"><span role="presentation" style="box-sizing:border-box">nanoscale
 imaging on conventional microscopes.</span><span role="presentation" style="box-sizing:border-box">
</span><span role="presentation" style="box-sizing:border-box">ExM is a relatively simple tissue&nbsp;</span></span><span style="background-image:initial; background-position:initial; background-size:initial; background-repeat:initial; background-origin:initial; background-clip:initial"><span role="presentation" style="box-sizing:border-box">processing
 technique that relies on embedding a tissue specimen within a swellable&nbsp;</span></span><span style="background-image:initial; background-position:initial; background-size:initial; background-repeat:initial; background-origin:initial; background-clip:initial"><span role="presentation" style="box-sizing:border-box">polyelectrolyte
 hydrogel. When the hydrogel expands, the corresponding molecular&nbsp;</span></span><span style="background-image:initial; background-position:initial; background-size:initial; background-repeat:initial; background-origin:initial; background-clip:initial"><span role="presentation" style="box-sizing:border-box">labels
 smoothly expand within a diffraction-limited region, significantly improving&nbsp;</span></span><span style="background-image:initial; background-position:initial; background-size:initial; background-repeat:initial; background-origin:initial; background-clip:initial"><span role="presentation" style="box-sizing:border-box">spatial
 resolution.</span><span role="presentation" style="box-sizing:border-box"> </span>
<span role="presentation" style="box-sizing:border-box">While increasing the tissue volume by 4x-20x dramatically im</span></span><span style="background-image:initial; background-position:initial; background-size:initial; background-repeat:initial; background-origin:initial; background-clip:initial"><span role="presentation" style="box-sizing:border-box">proves
 resolution, confocal imaging becomes impractical for large samples.</span><span role="presentation" style="box-sizing:border-box">
</span><span role="presentation" style="box-sizing:border-box">This is&nbsp;</span></span><span style="background-image:initial; background-position:initial; background-size:initial; background-repeat:initial; background-origin:initial; background-clip:initial"><span role="presentation" style="box-sizing:border-box">because
 label de-crowding dilutes fluorescence signal and prolonged exposure results&nbsp;</span></span><span style="background-image:initial; background-position:initial; background-size:initial; background-repeat:initial; background-origin:initial; background-clip:initial"><span role="presentation" style="box-sizing:border-box">in
 photobleaching of adjacent fluorophores. This dissertation focuses on overcoming&nbsp;</span></span><span style="background-image:initial; background-position:initial; background-size:initial; background-repeat:initial; background-origin:initial; background-clip:initial"><span role="presentation" style="box-sizing:border-box">these
 limitations by developing a fast tissue imaging methodology capable of multi</span></span><span style="background-image:initial; background-position:initial; background-size:initial; background-repeat:initial; background-origin:initial; background-clip:initial"><span role="presentation" style="box-sizing:border-box">plex
 three-dimensional imaging at super-resolution. This method combines widefield&nbsp;</span></span><span style="background-image:initial; background-position:initial; background-size:initial; background-repeat:initial; background-origin:initial; background-clip:initial"><span role="presentation" style="box-sizing:border-box">imaging
 with quantum dot nanoparticles (Qdots) in ExM labeling and deconvolution&nbsp;</span></span><span style="background-image:initial; background-position:initial; background-size:initial; background-repeat:initial; background-origin:initial; background-clip:initial"><span role="presentation" style="box-sizing:border-box">for
 contrast enhancement. Three major contributions leveraging the advancement of&nbsp;</span></span><span style="background-image:initial; background-position:initial; background-size:initial; background-repeat:initial; background-origin:initial; background-clip:initial"><span role="presentation" style="box-sizing:border-box">ExM
 in fluorescence imaging are discussed to this end. ExM compatible Qdot labeling</span>
</span></span><span style="line-height:107%; font-family:Arial,sans-serif">for improved photostability, widefield imaging for improved signal-to-noise ratio with&nbsp;fast imaging speed, and deconvolution for further contrast, resolution improvement&nbsp;in three-dimensional
 volume rendering. The whole research opens the door to fast&nbsp;and relatively simple 3D nanoscale imaging for applications in biology and medicine at low-cost settings.<br>
<br>
</span></font></p>
</td>
</tr>
</tbody>
</table>
</td>
</tr>
<tr>
<td><font size="2"><img src="https://www.egr.uh.edu/sites/www.egr.uh.edu/files/enews/2022/images/dissertation2.png" alt="Engineered For What's Next" width="600" height="82"></font></td>
</tr>
</tbody>
</table>
</div>
</div>
</div>
</body>
</html>