<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<style type="text/css" style="display:none;"> P {margin-top:0;margin-bottom:0;} </style>
</head>
<body dir="ltr">
<div style="font-family: Calibri, Arial, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);" class="elementToProof">
</div>
<table align="center" width="600" style="font-family:Arial, sans-serif;font-size:medium">
<tbody>
<tr>
<td><img alt="Dissertation Defense Announcement at the Cullen College of Engineering" width="600" height="171" src="https://www.egr.uh.edu/sites/www.egr.uh.edu/files/enews/2022/images/dissertation1.png">
<table align="center">
<tbody>
<tr>
<td align="center" style="padding:40px 20px 10px">
<div style="font-size:24px;color:rgb(200, 16, 46);line-height:28px"><strong>Heartbeat Optical Coherence Elastography:<br>
A Method for Passive Biomechanical Assessment of the Cornea<br>
</strong></div>
<div style="margin-top:5px;line-height:22px"><strong></strong></div>
<div style="margin:30px 0px;line-height:20px">
<div style="font-size:18px;margin-bottom:5px"><strong>Achuth Nair</strong></div>
<div style="font-size:14px">
<p style="font-family:Arial, Helvetica, sans-serif;line-height:22px;margin:0px 0px 5px">
April 21, 2022; 11:00 AM - 1:00 PM (CST)<br>
Location: 280-Smith Wensveen Conference Room , Health & Biomedical Sciences Building 1<br>
Teams:<span> </span><a href="https://urldefense.com/v3/__https://teams.microsoft.com/l/meetup-join/19*3ameeting_OTJlODE3ZjYtNWNlOC00YmNiLWFkMzUtMjZlMDA1OTM1ZGZh*40thread.v2/0?context=*7b*22Tid*22*3a*22170bbabd-a2f0-4c90-ad4b-0e8f0f0c4259*22*2c*22Oid*22*3a*22b30dfe02-e8ee-4b31-956a-ea842272fcbd*22*7d__;JSUlJSUlJSUlJSUlJSUl!!LkSTlj0I!GlMyJXSFXe4sHD9FqHUiMmupQ-yMcSvRLb93D1j5zbCkkPHqveTJQAvNV-U8jcxm0L67VvJN20x3w7TZVERQoII$" style="color:rgb(200, 16, 46)">Link</a></p>
</div>
</div>
<div style="font-size:14px;line-height:20px">
<p style="font-family:Arial, Helvetica, sans-serif;line-height:22px;margin:0px 0px 5px">
<strong>Committee Chair:</strong><br>
Kirill V. Larin, Ph.D.<br>
</p>
</div>
<div style="font-size:14px;line-height:20px">
<p style="font-family:Arial, Helvetica, sans-serif;line-height:22px;margin:0px 0px 20px">
<strong>Committee Members:</strong><br>
Salavat R. Aglyamov, Ph.D. | Michael D. Twa, Ph.D. | Geunyoung Yoon, Ph.D. | Yingchun Zhang, Ph.D. | Nuri F. Ince, Ph.D.</p>
</div>
</td>
</tr>
<tr>
<td style="padding:0px 20px 20px">
<p style="font-family:Arial, Helvetica, sans-serif;font-size:16px;line-height:22px;margin:15px 0px;color:rgb(200, 16, 46)">
<strong>Abstract</strong></p>
<p style="font-family:Arial, Helvetica, sans-serif;font-size:14px;line-height:22px;margin:15px 0px">
The biomechanical properties of the cornea are known to play a role in the development of ocular disease. Furthermore, various treatments and surgical interventions performed on the cornea may also alter these mechanical properties. Since changes in tissue
biomechanical properties are known to precede changes in structure and function, tools that can measure these properties may be invaluable for diagnostics and personalized treatment planning. Optical coherence elastography (OCE) is a highly effective tool
for measuring the cornea's biomechanical properties. OCE is a functional extension of optical coherence tomography (OCT), a high-resolution optical imaging modality commonly used in the clinic for imaging ocular tissues. OCE works in principle by using OCT
to detect a tissue's response to an induced displacement. This dissertation describes the development of a novel, completely passive optical elastography technique known as heartbeat optical coherence elastography (Hb-OCE). This technique measures corneal
stiffness in response to the heartbeat-induced ocular pulse.<br>
First, the initial development and application of the Hb-OCE technique are demonstrated ex vivo. Hb-OCE successfully detects mechanical contrast in the cornea before and after a collagen cross-linking treatment to induce corneal stiffening. Second, Hb-OCE is
used in combination with more established optical elastography techniques to investigate the effects of collagen XII deficiency on the stiffness of the murine cornea. Collagen XII is known to play a role in corneal structure and function. Assessing the effects
of proteins like collagen XII on corneal biomechanical properties can help reveal the underlying effects of the molecular components of the cornea on its structure and function. Next, the Hb-OCE technique is translated in vivo, and corneal stiffness is detected
as a function of the ocular pulse. Finally, the passive Hb-OCE technique is combined with the active compression OCE technique for one of the first applications of multimodal OCE to measure the mechanical properties of the cornea in vivo. Furthermore, the
ability of the Hb-OCE technique to map mechanical contrast is also demonstrated.</p>
</td>
</tr>
</tbody>
</table>
</td>
</tr>
<tr>
<td><img alt="Engineered For What's Next" width="600" height="82" src="https://www.egr.uh.edu/sites/www.egr.uh.edu/files/enews/2022/images/dissertation2.png"></td>
</tr>
</tbody>
</table>
<div>
<div id="Signature">
<div>
<div id="divtagdefaultwrapper" dir="ltr" style="font-size:12pt; color:#000000; font-family:Calibri,Helvetica,sans-serif">
<div style="font-family:Calibri,sans-serif; font-size:14px; line-height:normal">
<div class="elementToProof"><a href="mailto:riward@central.uh.edu" style="color:purple"></a><br>
</div>
<div></div>
</div>
</div>
</div>
</div>
</div>
</body>
</html>