<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<style type="text/css" style="display:none;"> P {margin-top:0;margin-bottom:0;} </style>
</head>
<body dir="ltr">
<div style="font-family: Calibri, Arial, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);" class="elementToProof">
</div>
<table align="center" width="600" style="font-family:Arial, sans-serif;font-size:medium">
<tbody>
<tr>
<td><img alt="Dissertation Defense Announcement at the Cullen College of Engineering" width="600" height="171" src="https://www.egr.uh.edu/sites/www.egr.uh.edu/files/enews/2022/images/dissertation1.png">
<table align="center">
<tbody>
<tr>
<td align="center" style="padding:40px 20px 10px">
<div style="font-size:24px;color:rgb(200, 16, 46);line-height:28px"><strong>Biomechanical Property Assessment Using Ultrasound Elastography and Optical Coherence Elastography<br>
</strong></div>
<div style="margin-top:5px;line-height:22px"><strong></strong></div>
<div style="margin:30px 0px;line-height:20px">
<div style="font-size:18px;margin-bottom:5px"><strong>Justin Randall Rippy</strong></div>
<div style="font-size:14px">
<p style="font-family:Arial, Helvetica, sans-serif;line-height:22px;margin:0px 0px 5px">
April 18, 2022; 2:00 PM - 4:00 PM (CST)<br>
Location: Health 1 Room 350<br>
Teams:<span> </span><a href="https://urldefense.com/v3/__https://teams.microsoft.com/l/meetup-join/19*3ameeting_NzEzYmQ4NTgtOTcxNi00ZWQxLWI0YzAtYzNkYjIzMmI4NDlm*40thread.v2/0?context=*7b*22Tid*22*3a*22170bbabd-a2f0-4c90-ad4b-0e8f0f0c4259*22*2c*22Oid*22*3a*22b30dfe02-e8ee-4b31-956a-ea842272fcbd*22*7d__;JSUlJSUlJSUlJSUlJSUl!!LkSTlj0I!FaGN8VxRYcDuiaNKdYk_tdfjk_NqJpP9-IkRtk6urOCqXDD-da1Qyv7iIwBvSnaykqo0-t7hHc7A6Q-goVO150dieEA$" style="color:rgb(200, 16, 46)">Link</a></p>
</div>
</div>
<div style="font-size:14px;line-height:20px">
<p style="font-family:Arial, Helvetica, sans-serif;line-height:22px;margin:0px 0px 5px">
<strong>Committee Chair:</strong><br>
Kirill V. Larin, Ph.D.<br>
</p>
</div>
<div style="font-size:14px;line-height:20px">
<p style="font-family:Arial, Helvetica, sans-serif;line-height:22px;margin:0px 0px 20px">
<strong>Committee Members:</strong><br>
Salavat R. Aglyamov, Ph.D. | Jingfei Liu, Ph.D. | Tianfu Wu, Ph.D. | Jerome Schultz, Ph.D. | David Mayerich, Ph.D.</p>
</div>
</td>
</tr>
<tr>
<td style="padding:0px 20px 20px">
<p style="font-family:Arial, Helvetica, sans-serif;font-size:16px;line-height:22px;margin:15px 0px;color:rgb(200, 16, 46)">
<strong>Abstract</strong></p>
<p style="font-family:Arial, Helvetica, sans-serif;font-size:14px;line-height:22px;margin:15px 0px">
The measurement of biomechanical tissue properties is important for disease diagnosis, for tracking disease progression, and for evaluating treatment efficacy. Elastography is a powerful preclinical tool for measuring the biomechanical properties of tissues.
This dissertation reports several significant contributions that further the field of elastography as a whole. These contributions also represent key steps toward the realization of quantitative compression elastography (QCE). First, motion estimation algorithms
were analyzed to determine which algorithm allowed for the most accurate measurement of motion and subsequent elastic wave speed. This is significant for the entire field of elastography, as motion estimation algorithms are used regardless of choice of imaging
modality or method. Following this, ultrasound shear wave elastography and transient optical coherence elastography were compared under similar conditions to determine if they gave comparable results. This analysis proves that the results obtained from both
modalities are comparable and that they can be used interchangeably. While this is important for the field of elastography, i.e., measurements taken with one can and should be compared to the other, it is absolutely crucial for the development of QCE. If the
two methods cannot give comparable results, it follows that techniques used to obtain quantitative information from one cannot be used in the other. The most important contribution is the development of QCE. QCE is a simple, multi-modal, quantitative elastography
technique that borrows the idea of a compliant stress sensor from optical coherence elastography and improves upon it by removing the need for calibration. Because strain imaging and wave excitation can be performed without moving the transducer, ultrasound
has the unique ability to essentially calibrate the sensor in place during the act of compression. Furthermore, this allows for a more accurate measurement than is typically possible when using a compliant sensor because the exact sensor conditions can be
known at the time of measurement instead of assumed from uniaxial compression testing. Overall, the contributions of this work serve to increase accuracy in elastographic measurements, further multimodal elastography, and serve as the genesis of quantitative
compression elastography methods in ultrasound.</p>
</td>
</tr>
</tbody>
</table>
</td>
</tr>
<tr>
<td><img alt="Engineered For What's Next" width="600" height="82" src="https://www.egr.uh.edu/sites/www.egr.uh.edu/files/enews/2022/images/dissertation2.png"></td>
</tr>
</tbody>
</table>
<div>
<div id="Signature">
<div>
<div id="divtagdefaultwrapper" dir="ltr" style="font-size:12pt; color:#000000; font-family:Calibri,Helvetica,sans-serif">
<div style="font-family:Calibri,sans-serif; font-size:14px; line-height:normal">
<div class="elementToProof"><a href="mailto:riward@central.uh.edu" style="color:purple"></a><br>
</div>
<div></div>
</div>
</div>
</div>
</div>
</div>
</body>
</html>