<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=Windows-1252">
<style type="text/css" style="display:none;"> P {margin-top:0;margin-bottom:0;} </style>
</head>
<body dir="ltr">
<div style="font-family: Calibri, Arial, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);" class="elementToProof">
<span style="color: rgb(31, 73, 125);"> </span><br>
</div>
<div lang="EN-US">
<div class="x_WordSection1">
<div>
<p class="x_MsoNoSpacing" style="margin-right: 0in; margin-left: 0in; font-size: 12pt; font-family: "Times New Roman", serif;margin: 0in 0in 0.0001pt; font-size: 11pt; font-family: Calibri, sans-serif;">
</p>
<div align="center">
<table class="x_MsoNormalTable" border="0" cellspacing="0" cellpadding="0" width="0" style="width:6.25in">
<tbody>
<tr>
<td style="padding:0in 0in 0in 0in">
<p class="x_MsoNormal" align="center" style="margin: 0in 0in 0.0001pt; font-size: 11pt; font-family: Calibri, sans-serif;margin-right: 0in; margin-left: 0in; font-size: 12pt; font-family: "Times New Roman", serif;text-align:center; line-height:115%">
<span style="font-size:13.5pt; line-height:115%; font-family:"Arial",sans-serif; color:black"><img width="606" height="173" id="x_Picture_x0020_11" alt="Dissertation Defense Announcement at the Cullen College of Engineering" data-outlook-trace="F:1|T:1" src="cid:image002.jpg@01D84E5F.7A6F3E00"></span></p>
<div align="center">
<table class="x_MsoNormalTable" border="0" cellspacing="0" cellpadding="0" style="background:white">
<tbody>
<tr>
<td style="padding:30.0pt 15.0pt 7.5pt 15.0pt">
<p class="x_MsoNormal" align="center" style="margin: 0in 0in 0.0001pt; font-size: 11pt; font-family: Calibri, sans-serif;margin-right: 0in; margin-left: 0in; font-size: 12pt; font-family: "Times New Roman", serif;text-align:center; line-height:21.0pt">
<b><span style="font-size:16.0pt; font-family:"Times New Roman",serif; color:#C8102E">The Petroleum Engineering Department Presents</span></b></p>
<p class="x_MsoNormal" align="center" style="margin: 0in 0in 0.0001pt; font-size: 11pt; font-family: Calibri, sans-serif;margin-right: 0in; margin-left: 0in; font-size: 12pt; font-family: "Times New Roman", serif;text-align:center; line-height:21.0pt">
<b><span style="font-size:16.0pt; font-family:"Times New Roman",serif; color:#C8102E"> </span></b></p>
<p class="x_MsoNormal" align="center" style="margin: 0in 0in 0.0001pt; font-size: 11pt; font-family: Calibri, sans-serif;margin-right: 0in; margin-left: 0in; font-size: 12pt; font-family: "Times New Roman", serif;text-align:center">
<b><span style="font-size:16.0pt; font-family:"Times New Roman",serif; color:#C8102E">Pore–Scale Reactive Transport Modeling of Subsurface Water–Rock Interactions</span></b></p>
<p class="x_MsoNormal" align="center" style="margin: 0in 0in 0.0001pt; font-size: 11pt; font-family: Calibri, sans-serif;margin-right: 0in; margin-left: 0in; font-size: 12pt; font-family: "Times New Roman", serif;text-align:center; line-height:15.0pt">
<b><span style="font-size:13.5pt; font-family:"Times New Roman",serif; color:black">Jiahui You</span></b><span style="font-size:13.5pt; font-family:"Times New Roman",serif"></span></p>
<p class="x_MsoNormal" align="center" style="margin: 0in 0in 0.0001pt; font-size: 11pt; font-family: Calibri, sans-serif;margin-right: 0in; margin-left: 0in; font-size: 12pt; font-family: "Times New Roman", serif;margin-bottom:12.0pt; text-align:center; line-height:16.5pt">
<span style="font-size:10.5pt; font-family:"Arial",sans-serif; color:black">April 18, 2021; 10:00 AM - 12:00 AM (CST)<br>
Location: Technology Bridge Building 9, Classroom 124</span><span style="font-size:10.5pt; font-family:"Arial",sans-serif"></span></p>
<p class="x_MsoNormal" align="center" style="margin: 0in 0in 0.0001pt; font-size: 11pt; font-family: Calibri, sans-serif;margin-right: 0in; margin-left: 0in; font-size: 12pt; font-family: "Times New Roman", serif;margin-bottom:3.75pt; text-align:center; line-height:16.5pt">
<b><span style="font-size:10.5pt; font-family:"Arial",sans-serif; color:black">Committee Chair:</span></b><span style="font-size:10.5pt; font-family:"Arial",sans-serif; color:black"><br>
Dr. Kyung Jae Lee</span><span style="font-size:10.5pt; font-family:"Arial",sans-serif"></span></p>
<p class="x_MsoNormal" align="center" style="margin: 0in 0in 0.0001pt; font-size: 11pt; font-family: Calibri, sans-serif;margin-right: 0in; margin-left: 0in; font-size: 12pt; font-family: "Times New Roman", serif;margin-bottom:15.0pt; text-align:center; line-height:16.5pt">
<b><span style="font-size:10.5pt; font-family:"Arial",sans-serif; color:black">Committee Members:</span></b><span style="font-size:10.5pt; font-family:"Arial",sans-serif; color:black"><br>
Dr. Mohamed Soliman | Dr. Birol Dindoruk |Dr. Guan Qin | | Dr. Ahmad Sakhaee-Pour</span><span style="font-size:10.5pt; font-family:"Arial",sans-serif"></span></p>
</td>
</tr>
<tr>
<td style="padding:0in 15.0pt 15.0pt 15.0pt">
<p class="x_MsoNormal" style="margin: 0in 0in 0.0001pt; font-size: 11pt; font-family: Calibri, sans-serif;margin-right: 0in; margin-left: 0in; font-size: 12pt; font-family: "Times New Roman", serif;margin-right:0in; margin-bottom:11.25pt; margin-left:0in; line-height:16.5pt">
<b><span style="font-size:12.0pt; font-family:"Arial",sans-serif; color:#C8102E">Abstract</span></b><span style="font-size:12.0pt; font-family:"Arial",sans-serif; color:#C8102E"></span></p>
<p class="x_MsoNormal" style="margin: 0in 0in 0.0001pt; font-size: 11pt; font-family: Calibri, sans-serif;margin-right: 0in; margin-left: 0in; font-size: 12pt; font-family: "Times New Roman", serif;margin-right:0in; margin-bottom:11.25pt; margin-left:0in; text-align:justify; line-height:16.5pt">
<span style="font-size:10.5pt; font-family:"Arial",sans-serif; color:black">Understanding of reactive transport is of fundamental importance to various applications in subsurface systems of energy and resources. Such subsurface formations as natural shales
have rich compositions with carbonate, clay, sulfide, and quartz. In such systems, mineral–fluid interactions have critical impacts on the fluid transport, as subsequently resulting in the porosity–permeability alteration, pore geometry alteration, and flow
pathways evolution. The present dissertation mainly focuses on three mineral–fluid interactions: carbonate dissolution, clay swelling, and iron precipitation from sulfide (pyrite). These three mineral–fluid interactions are investigated through the following
specific application problems: calcite dissolution by hydrochloric acid (to investigate the carbonate dissolution), CO<sub>2</sub>–enriched brine injection (to investigate the carbonate dissolution and clay swelling), and hydraulic fracturing fluid injection
into shale (to investigate the iron precipitation). </span><span style="font-size:10.5pt; font-family:"Arial",sans-serif"></span></p>
<p class="x_MsoNormal" style="margin: 0in 0in 0.0001pt; font-size: 11pt; font-family: Calibri, sans-serif;margin-right: 0in; margin-left: 0in; font-size: 12pt; font-family: "Times New Roman", serif;margin-right:0in; margin-bottom:11.25pt; margin-left:0in; text-align:justify; line-height:16.5pt">
<span style="font-size:10.5pt; font-family:"Arial",sans-serif; color:black">In the first application problem, the developed pore–scale reactive transport model is applied to the calcite dissolution by hydrochloride acid on the ideal grain models, digital rock
images such as Niobrara formation, and fracturs with surface roughness. The effects of Damköhler number (<i>Da<sub>II</sub></i>), Péclet number (<i>Pe</i>), the heterogeneity of the pore structure, and the mineralogy on the dissolution pattern, porosity–permeability
relationship, and dissolution rate are investigated. The different dissolution and transport patterns are categorized with respect to the
<i>Da<sub>II</sub></i> and the <i>Pe</i>. We notice that the porosity–permeability relationships are significantly depending on the surface roughness factor of the fracture. In the second application problem, the reactive transport model is coupled with the
momentum conservation equation for plastic solid to describe the clay swelling during the injection of CO<sub>2</sub>–enriched brine into the systems with mixed minerals of calcite, clay, and quartz. The porosity–permeability relationships with pure calcite,
calcite–quartz, and clay–calcite of fracture–matrix systems are investigated. When the system contains clay, the permeability increase has been slowed with respect to the porosity increase induced by calcite dissolution. In the third application problem of
hydraulic fracturing fluid injection into shale, we first conduct the experiments with the pyrite sample to calibrate the reaction rate constant for the pyrite oxidation. This reaction rate constant is utilized to establish the numerical method to track the
iron precipitation on the pyrite surface by applying the Level–set method. The precipitation pattern on the digital rock image is investigated under different Damköhler numbers by a conceptual model. The quantified pore–scale parameters obtained from this
study are expected to improve current Darcy–scale models to accurately predict the long–term fate for the subsurface water–rock interactions.
</span><span style="font-size:10.5pt; font-family:"Arial",sans-serif"></span></p>
<p class="x_MsoNormal" style="margin: 0in 0in 0.0001pt; font-size: 11pt; font-family: Calibri, sans-serif;margin-right: 0in; margin-left: 0in; font-size: 12pt; font-family: "Times New Roman", serif;margin-right:0in; margin-bottom:11.25pt; margin-left:0in; text-align:justify; line-height:16.5pt">
<span style="color:black"><img width="624" height="85" id="x_Picture_x0020_12" data-outlook-trace="F:1|T:1" src="cid:image004.jpg@01D84E5F.7A6F3E00"></span><span style="font-size:10.5pt; font-family:"Arial",sans-serif"></span></p>
</td>
</tr>
</tbody>
</table>
</div>
</td>
</tr>
</tbody>
</table>
</div>
</div>
<p class="x_MsoNormal elementToProof" style="margin: 0in 0in 0.0001pt; font-size: 11pt; font-family: Calibri, sans-serif;margin-right: 0in; margin-left: 0in; font-size: 12pt; font-family: "Times New Roman", serif;">
</p>
</div>
</div>
</body>
</html>