<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<style type="text/css" style="display:none;"> P {margin-top:0;margin-bottom:0;} </style>
</head>
<body dir="ltr">
<div style="font-family: Calibri, Arial, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">
<b style="color: rgb(164, 25, 44); font-family: MiloOT-Bold; font-size: inherit; font-style: italic; font-variant-ligatures: inherit; font-variant-caps: inherit; text-align: justify; background-color: ;"><span style="font-size:18.0pt; font-family:"Calibri",sans-serif">Reliability
Analysis of Silicon Carbide Power Devices</span></b><br>
</div>
<div>
<div id="Signature">
<div>
<div class="WordSection1">
<p class="MsoNormal" style="margin: 0in 0in 0.0001pt; font-size: 11pt; font-family: Calibri, sans-serif;margin-bottom:6.0pt; text-align:justify">
<a href="https://zoom.us/j/478689422"><img border="0" width="453" height="171" align="left" hspace="12" alt="Dr. Stephen Bayne
Professor and Associate Chair of Graduate Studies
Texas Tech University
Monday, 23 March 2020, 9.55 AM
Room: ZOOM* (https://zoom.us/j/478689422; Meeting ID: 478 689 422) *Due to COVID-19 outbreak, the presentation will be online.
" style="width:4.7187in; height:1.7812in" data-outlook-trace="F:1|T:1" src="cid:image007.png@01D5FB9D.7A8F3320"></a><img border="0" width="114" height="152" id="Picture_x0020_1" alt="Stephen Bayne" style="width:1.1875in; height:1.5833in" data-outlook-trace="F:1|T:1" src="cid:image008.jpg@01D5FB9D.7A8F3320"><span class="A4" style="font-family: MiloOT-Bold; color: rgb(34, 30, 31); font-weight: bold;"><span style="font-size:14.0pt; font-family:"Calibri",sans-serif"></span></span></p>
<p class="MsoNormal" style="margin: 0in 0in 0.0001pt; font-size: 11pt; font-family: Calibri, sans-serif;margin-right:0in; margin-bottom:6.0pt; margin-left:0in; text-autospace:none">
<span style="font-size:12.0pt; font-family:MiloOT"> </span></p>
<p class="MsoNormal" style="margin: 0in 0in 0.0001pt; font-size: 11pt; font-family: Calibri, sans-serif;margin-right:0in; margin-bottom:6.0pt; margin-left:0in; text-autospace:none">
<span style=""></span></p>
<table cellpadding="0" cellspacing="0" align="left">
<tbody>
<tr>
<td width="0" height="1"></td>
</tr>
<tr>
<td></td>
<td><img width="156" height="32" style="width:1.625in; height:.3333in" data-outlook-trace="F:1|T:1" src="cid:image009.jpg@01D5FB9D.7A8F3320"></td>
</tr>
</tbody>
</table>
<span style="font-family:MiloOT"> </span>
<p></p>
<br clear="ALL" style="">
<p class="MsoNormal" style="margin: 0in 0in 0.0001pt; font-size: 11pt; font-family: Calibri, sans-serif;margin-right:0in; margin-bottom:6.0pt; margin-left:0in; text-align:justify">
For decades, silicon has been the material of choice for the vast majority of semiconductor devices. However, in recent years, power semiconductor devices made of wide-bandgap (WBG) materials such as silicon carbide (SiC) and gallium nitride (GaN) are increasingly
becoming available on the commercial market and are experiencing widespread adoption in many high power and high-voltage applications such as DC-DC converters, inverters, battery chargers, industrial motor drives, and solid-state pulse generators, to name
a few. The higher bandgap and inherent thermal properties of the WBG materials allow for advantages over traditional silicon devices including higher blocking voltages, increased switching speeds, physically smaller implementations of application circuits,
improved system efficiencies and higher operating temperatures. Despite these clear advantages, the full potential of WBG technology will not be realized until the overall industry confidence in the long-term reliability of WBG devices is increased. To that
end, Texas Tech University (TTU), with funding from PowerAmerica, has conducted extensive testing on commercially available SiC MOSFETs and diodes, to determine the overall reliability of these devices as well as any potential issues. TTU developed testbeds
for the following tests: high temperature gate bias (HTGB), high temperature reverse bias (HTRB), high temperature operating life (HTOL), time dependent dielectric breakdown (TDDB), short circuit, diode surge current, avalanche, di/dt, dv/dt, and hard switching.
The purpose of this presentation is to give an overview of WBG power semiconductor device testing, as well as a discussion of some of the results from the TTU PowerAmerica project.<span style="font-family:"Calibri Light",sans-serif"></span></p>
<p class="MsoNormal" style="margin: 0in 0in 0.0001pt; font-size: 11pt; font-family: Calibri, sans-serif;">
</p>
</div>
</div>
</div>
</div>
</body>
</html>