<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ks_c_5601-1987">
<style type="text/css" style="display:none;"> P {margin-top:0;margin-bottom:0;} </style>
</head>
<body dir="ltr">
<div id="Signature">
<div>
<div>
<div class="WordSection1">
<div>
<p class="MsoNormal" align="center" style="margin: 0in 0in 0.0001pt; font-size: 12pt; font-family: "Times New Roman", serif;margin-bottom:8.0pt; text-align:center; line-height:106%">
<b><span style="font-size:14.0pt; line-height:106%">NAME: </span></b><span style="font-size:14.0pt; line-height:106%">Zhe Sun</span><span style="font-size:11.0pt; line-height:106%; font-family:"Calibri","sans-serif""></span></p>
<p class="MsoNormal" align="center" style="margin: 0in 0in 0.0001pt; font-size: 12pt; font-family: "Times New Roman", serif;margin-bottom:8.0pt; text-align:center; line-height:106%">
<b><span style="font-size:14.0pt; line-height:106%">DATE: </span></b><span style="font-size:14.0pt; line-height:106%">Monday, July 29<sup>th</sup>, 2019
</span><span style="font-size:11.0pt; line-height:106%; font-family:"Calibri","sans-serif""></span></p>
<p class="MsoNormal" align="center" style="margin: 0in 0in 0.0001pt; font-size: 12pt; font-family: "Times New Roman", serif;margin-bottom:8.0pt; text-align:center; line-height:106%">
<b><span style="font-size:14.0pt; line-height:106%">TIME: </span></b><span style="font-size:14.0pt; line-height:106%">10:00 A.M.</span><span style="font-size:11.0pt; line-height:106%; font-family:"Calibri","sans-serif""></span></p>
<p class="MsoNormal" align="center" style="margin: 0in 0in 0.0001pt; font-size: 12pt; font-family: "Times New Roman", serif;margin-bottom:8.0pt; text-align:center; line-height:106%">
<b><span style="font-size:14.0pt; line-height:106%">PLACE:</span></b><span style="font-size:14.0pt; line-height:106%"> Chemical Engineering Conference Room, S234 Engineering Building 1</span><span style="font-size:11.0pt; line-height:106%; font-family:"Calibri","sans-serif""></span></p>
<p class="MsoNormal" align="center" style="margin: 0in 0in 0.0001pt; font-size: 12pt; font-family: "Times New Roman", serif;margin-bottom:8.0pt; text-align:center; line-height:106%">
<b><span style="font-size:14.0pt; line-height:106%">CHAIR/ADVISOR: </span></b><span style="font-size:14.0pt; line-height:106%">Dr. Vemuri Balakotaiah</span><span style="font-size:11.0pt; line-height:106%; font-family:"Calibri","sans-serif""></span></p>
<p class="MsoNormal" align="center" style="margin: 0in 0in 0.0001pt; font-size: 12pt; font-family: "Times New Roman", serif;margin-bottom:8.0pt; text-align:center; line-height:106%">
<b><span style="font-size:18.0pt; line-height:106%"> </span></b><span style="font-size:11.0pt; line-height:106%; font-family:"Calibri","sans-serif""></span></p>
<p class="MsoNormal" align="center" style="margin: 0in 0in 0.0001pt; font-size: 12pt; font-family: "Times New Roman", serif;margin-bottom:8.0pt; text-align:center; line-height:106%">
<b><span style="font-size:18.0pt; line-height:106%">Modeling and Bifurcation Analysis of Oxidative Coupling of Methane</span></b><span style="font-size:11.0pt; line-height:106%; font-family:"Calibri","sans-serif""></span></p>
<p class="MsoNormal" align="center" style="margin: 0in 0in 0.0001pt; font-size: 12pt; font-family: "Times New Roman", serif;margin-bottom:8.0pt; text-align:center; line-height:106%">
<b><span style="font-size:20.0pt; line-height:106%"> </span></b><span style="font-size:11.0pt; line-height:106%; font-family:"Calibri","sans-serif""></span></p>
<p class="MsoNormal" style="margin: 0in 0in 0.0001pt; font-size: 12pt; font-family: "Times New Roman", serif;margin-bottom:8.0pt; text-align:justify; line-height:200%">
In the first part, we present a detailed ignition-extinction analysis of Oxidative Coupling of Methane (OCM) in gas phase using a global kinetic model for the various oxidation, reforming and dehydrogenation reactions. The kinetic model satisfies the thermodynamic
constraints and is validated with literature data as well as new data obtained under near isothermal conditions. It is shown that the type of reactor used has profound influence on the width of the region of multiplicity. Further, the best C<span style="font-family:"Cambria Math","serif"">©ü</span>
yield may be obtained on the ignited branch close to the extinction point where exothermic chemistry dominates or at higher space times or feed temperatures where endothermic chemistry dominates. The extinction locus, which forms the boundary of the region
of autothermal operation, is determined as a function of various design and operating variables.<span style="font-size:11.0pt; line-height:200%; font-family:"Calibri","sans-serif""></span></p>
<p class="MsoNormal" style="margin: 0in 0in 0.0001pt; font-size: 12pt; font-family: "Times New Roman", serif;margin-bottom:8.0pt; text-align:justify; line-height:200%">
In the second part, ignition-extinction analysis of laboratory scale catalytic reactors with heat exchange with the furnace is provided. It is shown that the same volume of catalyst packed in tubes of different diameter and/or with different lengths of
inert sections could lead to different types of ignition-extinction behavior as well as product distribution. The impact of tube diameter, heat exchange time, length of inert sections and catalyst dilution on the ignition-extinction behavior is analyzed. Simulations
on the impact of heat loss, kinetics and heat/mass dispersion on the region of autothermal operation of lab-scale reactors are also presented.<span style="font-size:11.0pt; line-height:200%; font-family:"Calibri","sans-serif""></span></p>
<p class="MsoNormal" style="margin: 0in 0in 0.0001pt; font-size: 12pt; font-family: "Times New Roman", serif;margin-bottom:8.0pt; text-align:justify; line-height:200%">
In the third part, ignition-extinction behavior of catalytic OCM with La<span style="font-family:"Cambria Math","serif"">©ü</span>O<span style="font-family:"Cambria Math","serif"">©ý</span>/CaO catalyst in large scale adiabatic reactors is analyzed using
a global kinetic model. It is shown that in the homogeneous limit (small particles), the best selectivity of the C<span style="font-family:"Cambria Math","serif"">©ü</span> products is obtained in the limit of very thin bed (with effective heat and mass Peclet
numbers approaching zero). When inter-phase heat and mass transfer gradients are significant (larger particles) so that particle level ignition could occur, selectivity to C<span style="font-family:"Cambria Math","serif"">©ü</span> product can be enhanced.
The impact of particle properties, inter and intra-particle gradients on conversion and C<span style="font-family:"Cambria Math","serif"">©ü</span> product selectivity on the ignited branch is analyzed. Finally, some potential autothermal reactor designs for
OCM with catalysts of different activity are proposed.</p>
</div>
<div>
<blockquote style="border:none; border-left:solid #CCCCCC 1.0pt; padding:0in 0in 0in 6.0pt; margin-left:4.8pt; margin-right:0in">
<div>
<div>
<div>
<blockquote style="border:none; border-left:solid #CCCCCC 1.0pt; padding:0in 0in 0in 6.0pt; margin-left:4.8pt; margin-top:5.0pt; margin-right:0in; margin-bottom:5.0pt">
<div>
<div></div>
</div>
</blockquote>
</div>
</div>
</div>
</blockquote>
</div>
</div>
</div>
</div>
</div>
</body>
</html>