<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<style type="text/css" style="display:none;"><!-- P {margin-top:0;margin-bottom:0;} --></style>
</head>
<body dir="ltr">
<div id="divtagdefaultwrapper" style="font-size:12pt;color:#000000;font-family:Calibri,Helvetica,sans-serif;" dir="ltr">
<p style="margin-top:0;margin-bottom:0"><br>
</p>
<div style="color: rgb(0, 0, 0);">
<div lang="EN-US" link="blue" vlink="purple">
<div class="x_WordSection1">
<p class="x_xxxmsonormal" align="center" style="text-align:center; line-height:200%; background:white">
<b><span style="font-size:14.0pt; line-height:200%; color:black">PhD DEFENSE STUDENT: </span></b><span style="font-size:14.0pt; line-height:200%; color:black">Yuan-Yun Lin</span><span style="color:black"></span></p>
<p class="x_xxxmsonormal" align="center" style="text-align:center; line-height:200%; background:white">
<b><span style="font-size:14.0pt; line-height:200%; color:black">DATE: </span></b><span style="font-size:14.0pt; line-height:200%; color:black">Tuesday,<b>
</b>May 1, 2018</span><span style="color:black"></span></p>
<p class="x_xxxmsonormal" align="center" style="text-align:center; line-height:200%; background:white">
<b><span style="font-size:14.0pt; line-height:200%; color:black">TIME: </span></b><span style="font-size:14.0pt; line-height:200%; color:black">9:00 AM</span><span style="color:black"></span></p>
<p class="x_xxxmsonormal" align="center" style="text-align:center; line-height:200%; background:white">
<b><span style="font-size:14.0pt; line-height:200%; color:black">PLACE:</span></b><span style="font-size:14.0pt; line-height:200%; color:black"> Energy Research Park, Building 9, Room 125</span></p>
<p class="x_xxxmsonormal" align="center" style="text-align:center; line-height:150%; background:white">
<b><span style="font-size:14.0pt; line-height:150%; color:black">DISSERTATION CHAIRs:
</span></b><span style="font-size:14.0pt; line-height:150%; color:black">Dr. Michael Myers</span><span style="color:black"></span></p>
<div class="x_MsoNormal" align="center" style="text-align:center; line-height:150%; background:white">
<span style="font-size:14.0pt; line-height:150%; color:black">
<hr size="2" width="100%" align="center">
</span></div>
<p class="x_xxxmsonormal" align="center" style="text-align:center; line-height:200%; background:white">
<b><span style="font-size:14.0pt; line-height:200%; color:black">TITLE:</span></b></p>
<p class="x_MsoNormal" align="center" style="text-align:center"><b><span style="font-size:14.0pt; font-family:"Times New Roman","serif"">Nonlinear Transport Properties of Tight Formations</span></b></p>
<p class="x_MsoNormal"> </p>
<p class="x_MsoNormal" style="text-align:justify"><span style="font-family:"Times New Roman","serif"">Five different plug scale based measurements are modeled, emphasizing the role of nonlinearities. The necessity of using the full nonlinear flow equation for
the interpretation of the data is discussed. Our implementation of the transport equation includes the assumption of constant viscosity, rock compressibility, and pressure dependent permeability. Forchheimer terms are assumed negligible due to the low flow
rates encountered. The standard techniques (steady state, unsteady state, pulse decay, and sinusoidal pressure) differ from one another due to the addition of reference chambers.
</span></p>
<p class="x_MsoNormal" style="text-align:justify"><span style="font-family:"Times New Roman","serif""> </span></p>
<p class="x_MsoNormal" style="text-align:justify"><span style="font-family:"Times New Roman","serif"">The density effect establishes a nonlinear pressure profile even after the transients have dissipated. This effect leads to the estimation of permeability
that is too small compared to the typically assumed linear profile. In contrast, the Klinkenberg effect causes an increased estimate of permeability. It is difficult to separate these two effects, as a result, modeling the full nonlinear behavior of the transport
properties is necessary. The different effects of the non-linearities are presented for the modeled measurement protocols. A new technique, the k<sub>0</sub>-b plot is introduced to separate these two effects.
</span></p>
<p class="x_MsoNormal" style="text-align:justify"><span style="font-family:"Times New Roman","serif""> </span></p>
<p class="x_MsoNormal" style="text-align:justify"><span style="font-family:"Times New Roman","serif"">Unique equipment was developed at University of Houston, which is much simpler and minimizes the impact of gas leakage. Prototype equipment was built, and
the initial permeability measurement was performed. This equipment allows all the standard technique to be performed. In addition, a new technique (the moving boundary conditions) is possible. The advantages of this technique are discussed.
</span></p>
<p class="x_MsoNormal" style="text-align:justify"><span style="font-family:"Times New Roman","serif""> </span></p>
<p class="x_MsoNormal" style="text-align:justify"><span style="font-family:"Times New Roman","serif"">The modeling indicates that plug scale measurements are practical in terms of the amount of time required, and that grinding of the samples is not necessary.
We recommend performing measurements at different mean pore pressure to allow the k<sub>0</sub>- b plot to be applied.</span></p>
</div>
</div>
</div>
</div>
</body>
</html>