<html><head></head><body style="word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space; color: rgb(0, 0, 0); font-size: 14px; font-family: Calibri, sans-serif; "><div><div><div><br></div></div></div><span id="OLK_SRC_BODY_SECTION"><div><meta http-equiv="Content-Type" content="text/html charset=utf-8"><div style="word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space;" class=""><div apple-content-edited="true" class=""><div class=""><span class="" style="font-weight: bold;">Dissertation title: Design, synthesis and characterization of quinone electrode materials fro sustainable energy storage</span></div><div class=""><span class="" style="font-weight: bold;"><br class=""></span></div><div class=""><b class="">Committee chair: Prof. Yan Yao</b></div><div class=""><b class=""><br class=""></b></div><div class=""><b class="">Date: Friday, July 14th </b><b class="">10:00 am-12:00 pm</b></div><div class=""><b class=""><br class=""></b></div><div class=""><b class="">Location: ECE Large conference room, N308 Cullen College of Engineering Bldg 1</b></div><div class=""><br class=""></div><div class=""><b class="">Abstract: </b>The energy crisis and environmental issues have instigated the integration of</div><div class="" style="margin: 0px;">renewable energy sources into the electric grid. A robust, safe, low-cost, and long-life energy</div><div class="" style="margin: 0px;">storage system is therefore strongly desired to maximize the benefits of intermittent</div><div class="" style="margin: 0px;">renewable resources. Organic electrode materials, such as quinones, have recently attracted</div><div class="" style="margin: 0px;">significant attention due to their high capacity, low-cost, environmental friendliness, and</div><div class="" style="margin: 0px;">ability to be derived from biomass. The objective of this dissertation is to design, synthesize,</div><div class="" style="margin: 0px;">and characterize multiple quinone-based electrode materials in aqueous and non-aqueous</div><div class="" style="margin: 0px;">electrolytes for building next-generation energy storage technologies. My aim is to better</div><div class="" style="margin: 0px;">understand the complex interactions among redox molecules/oligomers, ions, electrons, and</div><div class="" style="margin: 0px;">electrolytes, and find ways to design better materials with improved performance.</div><div class="" style="margin: 0px;"> In this dissertation, I report the design, synthesis, and characterization of quinonebased</div><div class="" style="margin: 0px;">oligomers and corresponding electrochemical properties in aqueous and non-aqueous</div><div class="" style="margin: 0px;">electrolytes. I first report the synthesis of two cross-conjugated quinone oligomers and the</div><div class="" style="margin: 0px;">effects of cross-conjugation and molecular conformations on the electrochemical properties. I</div><div class="" style="margin: 0px;">further investigate the oligomers in aqueous electrolytes and discover the maximum capacity</div><div class="" style="margin: 0px;">can be realized when the pH of electrolyte is above the pK<span class="">a </span>of the reduced quinones. Third, I</div><div class="" style="margin: 0px;">discover that a sufficient swelling for the polyquinone film may be imperative to release full</div><div class="" style="margin: 0px;">capacity. The combination of electrochemical quartz crystal microbalance and constant</div><div class="" style="margin: 0px;">current charge-discharge techniques reveal that hydrated cations serve as charge carriers in</div><div class="" style="margin: 0px;">aqueous electrolytes, and that the hydration numbers dynamically vary with the state of</div><div class="" style="margin: 0px;">charge and current density. Finally, an oligomer based on pyrene-4,5,9,10-tetraone core with</div><div class="" style="margin: 0px;">4-electron reduction was synthesized and characterized in various electrolytes (H<span class="">+</span>, Li<span class="">+</span>, Na<span class="">+</span>,</div><div class="" style="margin: 0px;">and Mg<span class="">2+ </span>over a pH range of 0-13). A Pourbaix diagram was then derived to understand the</div><div class="" style="margin: 0px;">competition between H<span class="">+ </span>and metal-ion coordination. The work described in this dissertation</div><div class="" style="margin: 0px;">strives to provide an in-depth understanding of the working mechanisms of quinone-based</div><div class="" style="margin: 0px;">electrodes and guidelines for future organic battery development.</div></div><br class=""></div></div></span><style class=""><!--
/* Font Definitions */
@font-face
        {font-family:"Cambria Math";
        panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
        {font-family:Calibri;
        panose-1:2 15 5 2 2 2 4 3 2 4;}
@font-face
        {font-family:Tahoma;
        panose-1:2 11 6 4 3 5 4 4 2 4;}
@font-face
        {font-family:"Century Gothic";
        panose-1:2 11 5 2 2 2 2 2 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
        {margin:0in;
        margin-bottom:.0001pt;
        font-size:12.0pt;
        font-family:"Times New Roman","serif";}
a:link, span.MsoHyperlink
        {mso-style-priority:99;
        color:blue;
        text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
        {mso-style-priority:99;
        color:purple;
        text-decoration:underline;}
p.MsoAcetate, li.MsoAcetate, div.MsoAcetate
        {mso-style-priority:99;
        mso-style-link:"Balloon Text Char";
        margin:0in;
        margin-bottom:.0001pt;
        font-size:8.0pt;
        font-family:"Tahoma","sans-serif";}
span.BalloonTextChar
        {mso-style-name:"Balloon Text Char";
        mso-style-priority:99;
        mso-style-link:"Balloon Text";
        font-family:"Tahoma","sans-serif";}
span.EmailStyle19
        {mso-style-type:personal-reply;
        font-family:"Calibri","sans-serif";
        color:#1F497D;}
.MsoChpDefault
        {mso-style-type:export-only;
        font-size:10.0pt;}
@page WordSection1
        {size:8.5in 11.0in;
        margin:1.0in 1.0in 1.0in 1.0in;}
div.WordSection1
        {page:WordSection1;}
--></style></body></html>