<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40"><head><META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=us-ascii"><meta name=Generator content="Microsoft Word 14 (filtered medium)"><style><!--
/* Font Definitions */
@font-face
        {font-family:"MS Mincho";
        panose-1:2 2 6 9 4 2 5 8 3 4;}
@font-face
        {font-family:"Cambria Math";
        panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
        {font-family:Calibri;
        panose-1:2 15 5 2 2 2 4 3 2 4;}
@font-face
        {font-family:Tahoma;
        panose-1:2 11 6 4 3 5 4 4 2 4;}
@font-face
        {font-family:"\@MS Mincho";
        panose-1:2 2 6 9 4 2 5 8 3 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
        {margin:0in;
        margin-bottom:.0001pt;
        font-size:11.0pt;
        font-family:"Calibri","sans-serif";}
a:link, span.MsoHyperlink
        {mso-style-priority:99;
        color:blue;
        text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
        {mso-style-priority:99;
        color:purple;
        text-decoration:underline;}
p.MsoPlainText, li.MsoPlainText, div.MsoPlainText
        {mso-style-priority:99;
        mso-style-link:"Plain Text Char";
        margin:0in;
        margin-bottom:.0001pt;
        font-size:11.0pt;
        font-family:"Calibri","sans-serif";}
p.MsoAcetate, li.MsoAcetate, div.MsoAcetate
        {mso-style-priority:99;
        mso-style-link:"Balloon Text Char";
        margin:0in;
        margin-bottom:.0001pt;
        font-size:8.0pt;
        font-family:"Tahoma","sans-serif";}
span.PlainTextChar
        {mso-style-name:"Plain Text Char";
        mso-style-priority:99;
        mso-style-link:"Plain Text";
        font-family:"Calibri","sans-serif";}
span.BalloonTextChar
        {mso-style-name:"Balloon Text Char";
        mso-style-priority:99;
        mso-style-link:"Balloon Text";
        font-family:"Tahoma","sans-serif";}
.MsoChpDefault
        {mso-style-type:export-only;
        font-family:"Calibri","sans-serif";}
@page WordSection1
        {size:8.5in 11.0in;
        margin:1.0in 1.0in 1.0in 1.0in;}
div.WordSection1
        {page:WordSection1;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]--></head><body lang=EN-US link=blue vlink=purple><div class=WordSection1><p class=MsoNormal align=center style='text-align:center'><a name="_Toc278295476"><b><u><span style='font-size:16.0pt'>PhD Dissertation Announcement<o:p></o:p></span></u></b></a></p><p class=MsoNormal align=center style='text-align:center'><b><span style='font-size:16.0pt'><o:p> </o:p></span></b></p><p class=MsoNormal align=center style='text-align:center'><b><span style='font-size:16.0pt'>Reduced-Order Modeling of Fluid Transmission Lines<o:p></o:p></span></b></p><p class=MsoNormal align=center style='text-align:center'><b><span style='font-size:16.0pt'><o:p> </o:p></span></b></p><p class=MsoNormal align=center style='text-align:center'><b><span style='font-size:12.0pt'>Taoufik Wassar, Doctor of Philosophy in Mechanical Engineering<o:p></o:p></span></b></p><p class=MsoNormal style='text-align:justify'><span style='font-size:12.0pt'><o:p> </o:p></span></p><p class=MsoNormal align=center style='text-align:center'><b><span style='font-size:10.0pt'>Defense date:</span></b><span style='font-size:10.0pt'> Tuesday, December 2<sup>nd</sup> 2014 <b>Time:</b> 10:00am <b>Location:</b> Room E214 in Eng. Bldg. 2<o:p></o:p></span></p><p class=MsoNormal align=center style='text-align:center'><span style='font-size:10.0pt'><o:p> </o:p></span></p><p class=MsoNormal align=center style='text-align:center'><b><span style='font-size:10.0pt'>Committee Members: </span></b><span style='font-size:10.0pt'>Dr. Matthew A. Franchek, Dr. Behrouz Ebrahimi, Dr. Dong Liu</span><span style='font-size:10.0pt'>, Dr. Gangbing Song,</span><span style='font-size:10.0pt'> Dr. Karolos Grigoriadis, Dr</span><span style='font-size:10.0pt'>. Vemuri Balakotaiah<b><o:p></o:p></b></span></p><p class=MsoNormal style='text-align:justify'><span style='font-size:12.0pt'><o:p> </o:p></span></p><p class=MsoNormal style='text-align:justify'><span style='font-size:12.0pt'>Solutions of fluid transients in transmission lines are very difficult to obtain, and they are generally computed using numerical techniques. In addition to their computational difficulties, the numerical methods do not directly translate into models having utility in system design, control design, and system health particularly when the lines are parts of a fluid network system. Not surprisingly, these limitations are fully addressed by model- order reduction techniques that yield to low-dimensional linear models, which contain all the essential information. <o:p></o:p></span></p><p class=MsoNormal style='text-align:justify;text-autospace:none'><span style='font-size:12.0pt'><o:p> </o:p></span></p><p class=MsoNormal style='text-align:justify;text-autospace:none'><span style='font-size:12.0pt'>In this dissertation, a procedure for obtaining </span><span style='font-size:12.0pt'>analytical low-dimensional models quantifying the dynamic behavior of confined single-phase flow in fluid transmission lines experiencing pressure and flow oscillations is formulated and presented. Solutions for the nonlinear Navier-Stokes equations are derived and written in transfer function matrix form using Laplace Transform. </span><span style='font-size:12.0pt'>Two distributed parameter models for the case of laminar flow are presented. The first model is called the dissipative model and is referred to in the literature as the “exact” model. The second model is obtained using distributed lumped parameters. </span><span style='font-size:12.0pt'>Since the resulting transfer functions in both models are transcendent, and therefore cannot be used for time-domain analyses, r</span><span style='font-size:12.0pt'>ational transfer function approximation is performed using the infinite product series expansion technique. Both models accurately predict the static and dynamic characteristics of fluid transmission lines using only few terms of the infinite products </span><span style='font-size:12.0pt'>over a broad frequency range</span><span style='font-size:12.0pt'>. The two models are then extended to account for turbulent flow using two different approaches. A more accurate model for turbulent flow in smooth-walled pipes is developed using an approximated weighting function</span><span style='font-size:12.0pt'>. The frequency response functions of the proposed models are compared with those of an existing numerical model showing acceptable coincidence.</span><span style='font-size:12.0pt'><o:p></o:p></span></p><p class=MsoNormal style='text-align:justify;text-autospace:none'><span style='font-size:12.0pt'><o:p> </o:p></span></p><p class=MsoNormal style='text-align:justify;text-autospace:none'><span style='font-size:12.0pt'>A major benefit of the proposed </span><span style='font-size:12.0pt'>models over the existing low-dimensional models is that </span><span style='font-size:12.0pt'>the coefficients of the rational transfer functions can be directly calculated using analytical equations rather than table or graphs, which introduces flexibility and </span><span style='font-size:12.0pt'>reduces the difficulties of modeling both laminar and turbulent flow in underdamped fluid transmission lines, while still maintaining model accuracy and complexities.<o:p></o:p></span></p><p class=MsoNormal><span style='font-size:12.0pt'><o:p> </o:p></span></p><p class=MsoPlainText><o:p> </o:p></p></div></body></html>