<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40"><head><meta http-equiv=Content-Type content="text/html; charset=utf-8"><meta name=Generator content="Microsoft Word 14 (filtered medium)"><style><!--
/* Font Definitions */
@font-face
        {font-family:"Cambria Math";
        panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
        {font-family:Calibri;
        panose-1:2 15 5 2 2 2 4 3 2 4;}
@font-face
        {font-family:Tahoma;
        panose-1:2 11 6 4 3 5 4 4 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
        {margin:0in;
        margin-bottom:.0001pt;
        font-size:12.0pt;
        font-family:"Times New Roman","serif";}
a:link, span.MsoHyperlink
        {mso-style-priority:99;
        color:blue;
        text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
        {mso-style-priority:99;
        color:purple;
        text-decoration:underline;}
p.MsoAcetate, li.MsoAcetate, div.MsoAcetate
        {mso-style-priority:99;
        mso-style-link:"Balloon Text Char";
        margin:0in;
        margin-bottom:.0001pt;
        font-size:8.0pt;
        font-family:"Tahoma","sans-serif";}
span.BalloonTextChar
        {mso-style-name:"Balloon Text Char";
        mso-style-priority:99;
        mso-style-link:"Balloon Text";
        font-family:"Tahoma","sans-serif";}
span.EmailStyle19
        {mso-style-type:personal;
        font-family:"Calibri","sans-serif";
        color:#1F497D;}
span.EmailStyle20
        {mso-style-type:personal;
        font-family:"Calibri","sans-serif";
        color:#1F497D;}
span.EmailStyle21
        {mso-style-type:personal-reply;
        font-family:"Calibri","sans-serif";
        color:#1F497D;}
.MsoChpDefault
        {mso-style-type:export-only;
        font-size:10.0pt;}
@page WordSection1
        {size:8.5in 11.0in;
        margin:1.0in 1.0in 1.0in 1.0in;}
div.WordSection1
        {page:WordSection1;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]--></head><body lang=EN-US link=blue vlink=purple><div class=WordSection1><p class=MsoNormal align=center style='text-align:center'><b><span style='font-size:14.0pt'>A Computational Study on Horizontal Pipe Flows with Multiple Crossflow Inlets<o:p></o:p></span></b></p><p class=MsoNormal align=center style='text-align:center'><b><span style='font-size:1.0pt'><o:p> </o:p></span></b></p><p class=MsoNormal align=center style='text-align:center'><b>Hilario Torres<o:p></o:p></b></p><p class=MsoNormal align=center style='text-align:center'><b><span style='font-size:1.0pt'><o:p> </o:p></span></b></p><p class=MsoNormal align=center style='text-align:center'><b>Date:</b> 7/23/14<o:p></o:p></p><p class=MsoNormal align=center style='text-align:center'><b>Time:</b> 1:30 PM<o:p></o:p></p><p class=MsoNormal align=center style='text-align:center'><b>Location:</b> Mechanical Engineering Small Conference Room (S208)<o:p></o:p></p><p class=MsoNormal align=center style='text-align:center'><b>Committee Members:</b> Dr. Ralph Metcalfe, Dr. Stanley Kleis, Dr. Giles Auchmuty<o:p></o:p></p><p class=MsoNormal align=center style='text-align:center'><span style='font-size:9.0pt'><o:p> </o:p></span></p><p class=MsoNormal style='line-height:200%'>Computational fluid dynamics was used to investigate the flow in pipes with multiple crossflow inlets as several geometric and boundary condition parameters were varied. The varied parameters included the spacing between inlets, angular phasing of inlets, inlet size, and the pressure boundary condition applied at the cross flow inlets. A total of 150 simulations were conducted, consisting of 30 geometries with 5 different sets of pressure boundary conditions for each geometry. All simulations were restricted to single phase, laminar, incompressible, and isothermal flows. The changes in the total flow rate contributed from all inlets as well as the relative contribution of each inlet are the key results that are presented. In general the total flow rate increases as the inlet size and pressure are increased. The flow becomes “blocked”, meaning that the downstream inlets produce a majority of the total flow rate, as the inlet size is increased or the inlet pressure is decreased. Although the effect of pressure diminishes as the distance between inlets decreases due to the difference in pressure gradient between inlets becoming small. At small distances between inlets the angular phase of the inlets also has an effect on the total flow rate. This effect is due to the direct interaction of the inlet jets with each other and decreases as the distance between inlets increases. This study was designed to gain a better understanding of the flow in horizontal wellbores for oil and gas applications but its results could be applied anywhere that laminar incompressible jets enter a confined crossflow.<o:p></o:p></p><p class=MsoNormal><o:p> </o:p></p></div></body></html>