<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40"><head><META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=us-ascii"><meta name=Generator content="Microsoft Word 12 (filtered medium)"><style><!--
/* Font Definitions */
@font-face
        {font-family:Calibri;
        panose-1:2 15 5 2 2 2 4 3 2 4;}
@font-face
        {font-family:Times;
        panose-1:2 2 6 3 5 4 5 2 3 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
        {margin:0in;
        margin-bottom:.0001pt;
        font-size:11.0pt;
        font-family:"Calibri","sans-serif";}
a:link, span.MsoHyperlink
        {mso-style-priority:99;
        color:blue;
        text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
        {mso-style-priority:99;
        color:purple;
        text-decoration:underline;}
span.EmailStyle17
        {mso-style-type:personal-compose;
        font-family:"Calibri","sans-serif";
        color:windowtext;}
.MsoChpDefault
        {mso-style-type:export-only;}
@page WordSection1
        {size:8.5in 11.0in;
        margin:1.0in 1.0in 1.0in 1.0in;}
div.WordSection1
        {page:WordSection1;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]--></head><body lang=EN-US link=blue vlink=purple><div class=WordSection1><p class=MsoNormal align=center style='margin-bottom:12.0pt;text-align:center'><b>ChBE Dept. Seminar<br>10:30am-11:30am, Friday, January 31, 2014<br>Rm W122</b><o:p></o:p></p><p class=MsoNormal align=center style='text-align:center'><b><span style='font-size:12.0pt'>Generating Functional Materials from Nanostructured Polymers<o:p></o:p></span></b></p><p class=MsoNormal align=center style='text-align:center'><b>Thomas H Epps, III<o:p></o:p></b></p><p class=MsoNormal align=center style='text-align:center'><b>University of Delaware<o:p></o:p></b></p><p class=MsoNormal><o:p> </o:p></p><p class=MsoNormal style='text-align:justify'><b><u><span style='font-size:12.0pt;font-family:"Times New Roman","serif"'>ABSTRACT:</span></u></b><span style='font-size:12.0pt;font-family:"Times New Roman","serif"'> </span><span style='font-family:Times'>The nanoscale self-assembly of block copolymers (BCP)s can facilitate materials design for many emerging nanotechnologies. </span>In the Epps group, w<span style='font-family:Times'>e utilize an assortment of techniques to understand and control the self-assembly of BCPs, including synthetic or non-synthetic manipulations to inter-block interactions and modifications to the copolymer’s external environment (solvents and interfaces). </span>Two areas of recent research in the group involve: <i>(1)</i> manipulating inter-block interactions independent of block chemistry and molecular weight, while retaining complex nanoscale structures, and <i>(2)</i> controlling thin film morphologies and orientations through substrate surface and solvent vapor (free surface) annealing methods. <u>In the first area</u>, we employ synthetic modifications to the tradition BCP architecture to control the ordering transitions and phase behavior in tapered diblock and triblock copolymers. Thus, we can generate and tune nanoscale networks for applications ranging from analytical separation membranes to ion-conducting materials. <u>In the second area</u>, we use solvent vapor annealing (SVA) and small-molecule chemistry on silicon substrates to manipulate BCP interactions with free and substrate surfaces. As one example of recent efforts, we developed a raster solvent vapor annealing (RSVA) method that provides “stylus-like” SVA writing capability, which enables positional control over nanoscale BCP orientations in thin film geometries. <o:p></o:p></p><p class=MsoNormal><span style='color:#1F497D'><o:p> </o:p></span></p><p class=MsoNormal style='text-align:justify'><b><u>BIO:</u></b> Prof. Epps is the Thomas and Kipp Gutshall Associate Professor of Chemical and Biomolecular Engineering at the University of Delaware (UD) with a joint appointment in Materials Science and Engineering. He received his B.S. degree in Chemical Engineering from MIT in 1998 and an M.S. degree in Chemical Engineering from MIT in 1999. He completed his graduate research at the University of Minnesota and received a Ph.D. in Chemical Engineering in 2004; he then joined NIST as a National Research Council Postdoctoral Fellow. Dr. Epps joined UD in the summer of 2006. <o:p></o:p></p><p class=MsoNormal style='text-align:justify'><o:p> </o:p></p><p class=MsoNormal><span style='letter-spacing:-.15pt'>His research interests include </span>nanostructured assemblies for targeted drug delivery,<span style='letter-spacing:-.15pt'> p</span>olymeric materials for bio-separation and ion-conduction membranes, nanostructured soft materials for catalytic applications, and surface responsive polymer films. At UD, he is <span style='letter-spacing:-.15pt'>a member of the Center for Neutron Science, Center for Molecular and Engineering Thermodynamics, and the Biomedical Engineering Program.</span><span style='color:#1F497D'><o:p></o:p></span></p><p class=MsoNormal><o:p> </o:p></p></div></body></html>