<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40"><head><META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=us-ascii"><meta name=Generator content="Microsoft Word 12 (filtered medium)"><!--[if !mso]><style>v\:* {behavior:url(#default#VML);}
o\:* {behavior:url(#default#VML);}
w\:* {behavior:url(#default#VML);}
.shape {behavior:url(#default#VML);}
</style><![endif]--><style><!--
/* Font Definitions */
@font-face
        {font-family:Calibri;
        panose-1:2 15 5 2 2 2 4 3 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
        {margin:0in;
        margin-bottom:.0001pt;
        font-size:12.0pt;
        font-family:"Times New Roman","serif";}
a:link, span.MsoHyperlink
        {mso-style-priority:99;
        color:blue;
        text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
        {mso-style-priority:99;
        color:purple;
        text-decoration:underline;}
span.EmailStyle17
        {mso-style-type:personal-reply;
        font-family:"Calibri","sans-serif";
        color:#1F497D;}
.MsoChpDefault
        {mso-style-type:export-only;
        font-size:10.0pt;}
@page WordSection1
        {size:8.5in 11.0in;
        margin:1.0in 1.0in 1.0in 1.0in;}
div.WordSection1
        {page:WordSection1;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]--></head><body lang=EN-US link=blue vlink=purple><div class=WordSection1><p class=MsoNormal><o:p>&nbsp;</o:p></p><div><p class=MsoNormal align=center style='text-align:center'><span style='font-size:11.0pt;font-family:"Calibri","sans-serif";color:black'><img width=624 height=78 id="Picture_x0020_1" src="cid:33B50CEB-10CC-4334-9385-E0C3FF58C8DE" alt="Tertiary_Electrical_color.jpg"><o:p></o:p></span></p><p class=MsoNormal align=center style='text-align:center'><b><span style='font-family:"Arial","sans-serif";color:black'>Wednesday, December 4, 2013</span></b><span style='font-size:11.0pt;font-family:"Calibri","sans-serif";color:black'><o:p></o:p></span></p><p class=MsoNormal align=center style='text-align:center'><b><span style='font-family:"Arial","sans-serif";color:black'>102-D &#8211; 4:15 PM</span></b><span style='font-size:11.0pt;font-family:"Calibri","sans-serif";color:black'><o:p></o:p></span></p><p class=MsoNormal align=center style='text-align:center'><b><span style='font-family:"Arial","sans-serif";color:black'>Dr. Ryan T. Canolty</span></b><span style='font-size:11.0pt;font-family:"Calibri","sans-serif";color:black'><o:p></o:p></span></p><p class=MsoNormal align=center style='text-align:center'><b><span style='font-family:"Arial","sans-serif";color:black'>Post-Doctoral Fellow</span></b><span style='font-size:11.0pt;font-family:"Calibri","sans-serif";color:black'><o:p></o:p></span></p><p class=MsoNormal align=center style='text-align:center'><b><span style='font-family:"Arial","sans-serif";color:black'>Department of Psychiatry</span></b><span style='font-size:11.0pt;font-family:"Calibri","sans-serif";color:black'><o:p></o:p></span></p><p class=MsoNormal align=center style='text-align:center'><b><span style='font-family:"Arial","sans-serif";color:black'>University of California, San Francisco</span></b><span style='font-size:11.0pt;font-family:"Calibri","sans-serif";color:black'><o:p></o:p></span></p><p class=MsoNormal align=center style='text-align:center'><b><span style='font-family:"Arial","sans-serif";color:black'>&nbsp;</span></b><span style='font-size:11.0pt;font-family:"Calibri","sans-serif";color:black'><o:p></o:p></span></p><p class=MsoNormal align=center style='text-align:center'><b><span style='font-family:"Arial","sans-serif";color:black'>Computation and communication in multi-scale brain networks</span></b><span style='font-size:11.0pt;font-family:"Calibri","sans-serif";color:black'><o:p></o:p></span></p><p class=MsoNormal><span style='font-family:"Arial","sans-serif";color:black'>&nbsp;</span><span style='font-size:11.0pt;font-family:"Calibri","sans-serif";color:black'><o:p></o:p></span></p><p class=MsoNormal style='text-align:justify'><b><span style='font-family:"Arial","sans-serif";color:black'>Abstract</span></b><span style='font-family:"Arial","sans-serif";color:black'>: The core principles governing the dynamic coordination of functional brain networks remain unclear. How do distributed ensembles of neurons transiently coordinate their activity across a variety of spatial and temporal scales? How does this distributed brain activity give rise to mental faculties such as memory, language comprehension, and attention? A full mechanistic account of this process remains elusive, but evidence suggests that neuronal oscillations may play a key role in organizing functional activity, with different rhythms influencing both local computation and long-range communication. We investigated these questions using electrophysiological data recorded from a variety of different scales, including electrocorticographic (ECoG) data from human neurosurgical patients as well as multi-site, microelectrode spike/field data recorded from macaques. This talk presents evidence focused on three conjectures about the organization of brain dynamics. First, brain areas exhibit a time-varying spectral &quot;signature&quot; of activation that can be used to track the onset, duration, and offset of functional activity across many different tasks, consistent with the hypothesis that local computation involves the ignition of functional (Hebbian) cell assemblies or synfire chains. Second, different tasks evoke distinct and repeatable patterns of oscillatory phase coupling between brain areas, consistent with the hypothesis that brain rhythms regulate the efficacy of communication between cortical regions. Third, the coupling between fast and slow brain rhythms (in humans) or between spikes and field potentials (in macaques) exhibit dynamic, task-specific changes that correlate with behavioral performance, suggesting that oscillations may help coordinate information exchange between subnetworks that span different spatial and temporal scales. Finally, we discuss new research directions and questions provoked by these findings, and investigate how these results may best translate into novel clinical interventions.</span><span style='font-size:11.0pt;font-family:"Calibri","sans-serif";color:black'><o:p></o:p></span></p><p class=MsoNormal><span style='font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497D'>&nbsp;</span><span style='font-size:11.0pt;font-family:"Calibri","sans-serif";color:black'><o:p></o:p></span></p></div></div></body></html>