<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40"><head><META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=us-ascii"><meta name=Generator content="Microsoft Word 12 (filtered medium)"><style><!--
/* Font Definitions */
@font-face
        {font-family:Calibri;
        panose-1:2 15 5 2 2 2 4 3 2 4;}
@font-face
        {font-family:Tahoma;
        panose-1:2 11 6 4 3 5 4 4 2 4;}
@font-face
        {font-family:"Albertus Extra Bold";}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
        {margin:0in;
        margin-bottom:.0001pt;
        font-size:11.0pt;
        font-family:"Calibri","sans-serif";}
h2
        {mso-style-priority:9;
        mso-style-link:"Heading 2 Char";
        margin:0in;
        margin-bottom:.0001pt;
        text-align:center;
        page-break-after:avoid;
        font-size:16.0pt;
        font-family:"Albertus Extra Bold";}
a:link, span.MsoHyperlink
        {mso-style-priority:99;
        color:blue;
        text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
        {mso-style-priority:99;
        color:purple;
        text-decoration:underline;}
span.EmailStyle17
        {mso-style-type:personal-compose;
        font-family:"Calibri","sans-serif";
        color:windowtext;}
span.Heading2Char
        {mso-style-name:"Heading 2 Char";
        mso-style-priority:9;
        mso-style-link:"Heading 2";
        font-family:"Albertus Extra Bold";
        font-weight:bold;}
.MsoChpDefault
        {mso-style-type:export-only;}
@page WordSection1
        {size:8.5in 11.0in;
        margin:1.0in 1.0in 1.0in 1.0in;}
div.WordSection1
        {page:WordSection1;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]--></head><body lang=EN-US link=blue vlink=purple><div class=WordSection1><h2><span style='font-size:12.0pt;font-family:"Tahoma","sans-serif"'>MS Thesis Presentation<o:p></o:p></span></h2><p class=MsoNormal><b><span style='font-size:12.0pt;font-family:"Tahoma","sans-serif"'><o:p> </o:p></span></b></p><p class=MsoNormal align=center style='text-align:center;line-height:115%'><b><span style='font-size:12.0pt;line-height:115%;font-family:"Tahoma","sans-serif"'>AN EMPIRICAL CHARACTERIZATION OF CONCRETE CHANNEL AND MODULATION SCHEMES <o:p></o:p></span></b></p><p class=MsoNormal align=center style='text-align:center;line-height:115%'><b><span style='font-size:12.0pt;line-height:115%;font-family:"Tahoma","sans-serif"'>WITH PIEZO ELECTRIC TRANSDUCERS BASED TRANSCEIVERS<o:p></o:p></span></b></p><p class=MsoNormal align=center style='text-align:center'><b><span style='font-size:12.0pt;font-family:"Tahoma","sans-serif"'><o:p> </o:p></span></b></p><p class=MsoNormal align=center style='text-align:center;line-height:115%'><b><span style='font-size:12.0pt;line-height:115%;font-family:"Tahoma","sans-serif"'>Sai Shiva Kailaswar<o:p></o:p></span></b></p><p class=MsoNormal><span style='font-size:9.0pt;font-family:"Tahoma","sans-serif"'> <o:p></o:p></span></p><p class=MsoNormal align=center style='text-align:center'><span style='font-size:12.0pt;font-family:"Tahoma","sans-serif"'>July 5<sup>th</sup>, 2012, 12:00 – 2:00 PM, PGH 550<o:p></o:p></span></p><p class=MsoNormal align=center style='text-align:center'><span style='font-size:12.0pt;font-family:"Tahoma","sans-serif"'><o:p> </o:p></span></p><p class=MsoNormal align=center style='text-align:center'><span style='font-size:12.0pt;font-family:"Tahoma","sans-serif"'>Committee: Dr. Rong Zheng (Chair), Dr. Zhu Han, Dr. Yuhua Chen<o:p></o:p></span></p><p class=MsoNormal><o:p> </o:p></p><p class=MsoNormal align=center style='text-align:center;line-height:115%'><b><span style='font-size:12.0pt;line-height:115%;font-family:"Tahoma","sans-serif"'>ABSTRACT<o:p></o:p></span></b></p><p class=MsoNormal style='text-align:justify;line-height:150%'><b><span style='font-size:10.0pt;line-height:150%;font-family:"Tahoma","sans-serif"'><o:p> </o:p></span></b></p><p class=MsoNormal style='text-align:justify;line-height:150%'><span style='font-size:10.0pt;line-height:150%;font-family:"Tahoma","sans-serif"'>Structural Health Monitoring (SHM) plays a vital role in improving the safety and maintainability of critical engineering structures. A network comprised of Piezo-electric sensors and actuators has been devised to monitor the condition of concrete structures. A piezoelectric transducer can also be used for communication as it utilizes a form of active sensing. A feasible data communication mechanism for sensor networks is needed to ensure effective transmission of information regarding the structural health conditions from sensor nodes to the central processing unit. This thesis lays the foundation toward designing a communication system that uses stress waves modulated with information inside concrete structure. The following tasks are essential in designing an effective communication system, namely, i) measurements of concrete channel response, ii) measurements of different modulation schemes and iii) the design of receiver amplifier based on Automatic gain control (AGC) technique. <o:p></o:p></span></p><p class=MsoNormal style='margin-top:6.0pt;mso-margin-bottom-alt:auto;text-align:justify;line-height:150%'><span style='font-size:10.0pt;line-height:150%;font-family:"Tahoma","sans-serif"'>The proposed solution utilizes GNU Radio, a software development toolkit to implement different modulation schemes and Universal Software Radio Peripheral (USRP) to connect the hardware (concrete channel) with software-defined radios to transmit/receive data. Concrete channel response is measured to find the suitable spectrum to send data through concrete. The constellations of the implemented modulation schemes are successfully recovered showing the capability of concrete channel for effective transmission of information. Bit Error Rate (BER) possible for various Signals to Noise Ratio (SNR) for different modulation schemes is found and compared based on center frequency, bandwidth and TX gain. Automatic gain control (AGC) circuit is designed to stabilize the output amplitude and improve the performance of the system.<o:p></o:p></span></p></div></body></html>