<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:x="urn:schemas-microsoft-com:office:excel" xmlns:p="urn:schemas-microsoft-com:office:powerpoint" xmlns:a="urn:schemas-microsoft-com:office:access" xmlns:dt="uuid:C2F41010-65B3-11d1-A29F-00AA00C14882" xmlns:s="uuid:BDC6E3F0-6DA3-11d1-A2A3-00AA00C14882" xmlns:rs="urn:schemas-microsoft-com:rowset" xmlns:z="#RowsetSchema" xmlns:b="urn:schemas-microsoft-com:office:publisher" xmlns:ss="urn:schemas-microsoft-com:office:spreadsheet" xmlns:c="urn:schemas-microsoft-com:office:component:spreadsheet" xmlns:odc="urn:schemas-microsoft-com:office:odc" xmlns:oa="urn:schemas-microsoft-com:office:activation" xmlns:html="http://www.w3.org/TR/REC-html40" xmlns:q="http://schemas.xmlsoap.org/soap/envelope/" xmlns:rtc="http://microsoft.com/officenet/conferencing" xmlns:D="DAV:" xmlns:Repl="http://schemas.microsoft.com/repl/" xmlns:mt="http://schemas.microsoft.com/sharepoint/soap/meetings/" xmlns:x2="http://schemas.microsoft.com/office/excel/2003/xml" xmlns:ppda="http://www.passport.com/NameSpace.xsd" xmlns:ois="http://schemas.microsoft.com/sharepoint/soap/ois/" xmlns:dir="http://schemas.microsoft.com/sharepoint/soap/directory/" xmlns:ds="http://www.w3.org/2000/09/xmldsig#" xmlns:dsp="http://schemas.microsoft.com/sharepoint/dsp" xmlns:udc="http://schemas.microsoft.com/data/udc" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:sub="http://schemas.microsoft.com/sharepoint/soap/2002/1/alerts/" xmlns:ec="http://www.w3.org/2001/04/xmlenc#" xmlns:sp="http://schemas.microsoft.com/sharepoint/" xmlns:sps="http://schemas.microsoft.com/sharepoint/soap/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:udcs="http://schemas.microsoft.com/data/udc/soap" xmlns:udcxf="http://schemas.microsoft.com/data/udc/xmlfile" xmlns:udcp2p="http://schemas.microsoft.com/data/udc/parttopart" xmlns:wf="http://schemas.microsoft.com/sharepoint/soap/workflow/" xmlns:dsss="http://schemas.microsoft.com/office/2006/digsig-setup" xmlns:dssi="http://schemas.microsoft.com/office/2006/digsig" xmlns:mdssi="http://schemas.openxmlformats.org/package/2006/digital-signature" xmlns:mver="http://schemas.openxmlformats.org/markup-compatibility/2006" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns:mrels="http://schemas.openxmlformats.org/package/2006/relationships" xmlns:spwp="http://microsoft.com/sharepoint/webpartpages" xmlns:ex12t="http://schemas.microsoft.com/exchange/services/2006/types" xmlns:ex12m="http://schemas.microsoft.com/exchange/services/2006/messages" xmlns:pptsl="http://schemas.microsoft.com/sharepoint/soap/SlideLibrary/" xmlns:spsl="http://microsoft.com/webservices/SharePointPortalServer/PublishedLinksService" xmlns:Z="urn:schemas-microsoft-com:" xmlns:st="" xmlns="http://www.w3.org/TR/REC-html40"><head><META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=us-ascii"><meta name=Generator content="Microsoft Word 12 (filtered medium)"><style><!--
/* Font Definitions */
@font-face
        {font-family:Calibri;
        panose-1:2 15 5 2 2 2 4 3 2 4;}
@font-face
        {font-family:Consolas;
        panose-1:2 11 6 9 2 2 4 3 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
        {margin:0in;
        margin-bottom:.0001pt;
        font-size:11.0pt;
        font-family:"Calibri","sans-serif";}
a:link, span.MsoHyperlink
        {mso-style-priority:99;
        color:blue;
        text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
        {mso-style-priority:99;
        color:purple;
        text-decoration:underline;}
p.MsoPlainText, li.MsoPlainText, div.MsoPlainText
        {mso-style-priority:99;
        mso-style-link:"Plain Text Char";
        margin:0in;
        margin-bottom:.0001pt;
        font-size:10.5pt;
        font-family:Consolas;}
span.PlainTextChar
        {mso-style-name:"Plain Text Char";
        mso-style-priority:99;
        mso-style-link:"Plain Text";
        font-family:Consolas;}
.MsoChpDefault
        {mso-style-type:export-only;}
@page WordSection1
        {size:8.5in 11.0in;
        margin:1.0in 1.0in 1.0in 1.0in;}
div.WordSection1
        {page:WordSection1;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]--></head><body lang=EN-US link=blue vlink=purple><div class=WordSection1><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>Greetings,<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif";color:black'><o:p> </o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>On behalf of Robert Azencott and Jeff Morgan, I am pleased to announce the 2011 University of Houston Amundson Lectures. For information about the lecture series and a short biography of Neal<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>Amundson, visit http://www.math.uh.edu/amundsonlectureseries/<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'><o:p> </o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>Our speaker this year is Professor Laurent Younes from Johns Hopkins University. Professor Younes is affiliated with the Center for Imaging Science and the Institute for Computational Medicine at Johns Hopkins. His research interests include statistical properties of Markov random fields, image analysis, deformation analysis - shape recognition, and computational anatomy. For details, visit http://cis.jhu.edu/~younes/<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'><o:p> </o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>The Amundson Lectures are scheduled for March 23-25, 2011 and will consist of 3 lectures:<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'><o:p> </o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>1) Colloquium Lecture<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'><o:p> </o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>Title: Shape Spaces and Computational Anatomy<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>Date: Wednesday, March 23, 2011<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>Time: 4-5 PM<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>Location: University of Houston Hilton Hotel - Shamrock Room<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'><o:p> </o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>(reception to follow in the Shamrock Room at 5 PM)<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'><o:p> </o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>2) Seminar Lecture<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'><o:p> </o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>Title: Diffeomorphic Optimal Control<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>Date: Thursday, March 24, 2011<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>Time: 4-5 PM<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>Location: University of Houston Hilton Hotel - Shamrock Room<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'><o:p> </o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>3) Lecture for Graduate Students<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'><o:p> </o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>Title: An Interesting Space of Plane Curves<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>Date: Friday, March 25, 2011<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>Time: 2-3 PM<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>Location University of Houston Philip G. Hoffman Hall (PGH) room 343<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'><o:p> </o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>ABSTRACTS<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'><o:p> </o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>1) Colloquium Lecture: Shape Spaces and Computational Anatomy<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'><o:p> </o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>A fundamental question in Computational Anatomy addresses how the shapes<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>of human organs are affected by disease.<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>This is motivated by the fact that, most cognitive disorders, for<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>example, result in selective atrophy of various structures in the brain.<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>Similarly, heart disease typically involves significant remodeling of<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>the cardiac muscle.<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>Describing how and where such shape changes occur can provide clinicians<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>with essential information on the nature of the disease.<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'><o:p> </o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>We will show how these issues can be addressed within the framework of<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>Grenander's Metric<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>Pattern Theory, and more specifically by building Riemannian spaces of<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>shapes. This will be illustrated by two case studies, the first one on<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>the analysis of<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>atrophy in the striatum and connected brain structure in relation with<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>Huntington's disease, and the second on the analysis of shape variation<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>in cardiac disease, and its relation with different forms of<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>cardiomyopathy.<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'><o:p> </o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'><o:p> </o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>2) Seminar Lecture: Diffeomorphic Optimal Control<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'><o:p> </o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>In the framework of the "large deformation diffeomorphic metric<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>matching" family of algorithms, one formulates the problem of finding<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>an optimal registration between two shapes, or two<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>images, as an optimal control problem where the control<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>specifies an Eulerian velocity associated to a time-dependent<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>diffeomorphism, with a cost represented by the norm of the velocity in a<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>suitably chosen Hilbert space of vector fields. Because this Hilbert norm<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>can also interpreted as the expression of a right-invariant Riemannian<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>metric in the Lie algebra of the diffeomorphism group, this directly relates<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>to the well-known geodesic equation, often called EPDiff, that expresses<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>momentum conservation.<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'><o:p> </o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>We will describe this approach, with a special focus on the situation<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>in which additional contraints are<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>placed on the Eulerian velocity to ensure that it belongs to a<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>finite dimensional subspace of the originally considered Hilbert space. This<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>subspace, which is shape-dependent, is generated by a finite number of<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>well chosen time-dependent vector fields that we call diffeons. Based<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>on the resulting maximum principle, we will provide optimization<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>algorithms for<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>the registration problems (and a few related issues), with<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>some preliminary numerical experiments in two dimensions.<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'><o:p> </o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'><o:p> </o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>3) Lecture for Graduate Students: An Interesting Space of Plane Curves<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'><o:p> </o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>The definition and study of spaces of plane shapes has met a<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>large amount of interest over the last ten years or so. It has important<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>applications in object<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>recognition (for the analysis of shape databases), and in medical<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>imaging. The theoretical background involves the construction of<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>infinite-dimensional manifolds of curves, in a Riemannian framework, which<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>is appealing, because it provides shapes spaces with a<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>rich structure, which is also useful for applications.<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>The presentation focuses on a particular Riemannian metric that has<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>very a specific property, in that<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>it can be characterized as an image of a Grassmann manifold by a<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>suitably chosen Riemannian submersion. A consequence of this is that<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>its analysis becomes relatively easy, with, for example, the<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'>possibility to compute geodesics explicitly.<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif";color:black'><o:p> </o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif";color:black'>-William Ott<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif";color:black'>Assistant Professor of Mathematics <o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif";color:black'>University of Houston<o:p></o:p></span></p><p class=MsoPlainText><span style='font-size:12.0pt;font-family:"Calibri","sans-serif"'><o:p> </o:p></span></p></div></body></html>