<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40"><head><meta http-equiv=Content-Type content="text/html; charset=us-ascii"><meta name=Generator content="Microsoft Word 12 (filtered medium)"><style><!--
/* Font Definitions */
@font-face
        {font-family:Calibri;
        panose-1:2 15 5 2 2 2 4 3 2 4;}
@font-face
        {font-family:TTFFAD44E8t00;}
@font-face
        {font-family:Times-Roman;}
@font-face
        {font-family:T3Font_0;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
        {margin:0in;
        margin-bottom:.0001pt;
        font-size:11.0pt;
        font-family:"Calibri","sans-serif";}
a:link, span.MsoHyperlink
        {mso-style-priority:99;
        color:blue;
        text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
        {mso-style-priority:99;
        color:purple;
        text-decoration:underline;}
span.EmailStyle17
        {mso-style-type:personal-compose;
        font-family:"Calibri","sans-serif";
        color:windowtext;}
p.yiv443321538msonormal, li.yiv443321538msonormal, div.yiv443321538msonormal
        {mso-style-name:yiv443321538msonormal;
        mso-margin-top-alt:auto;
        margin-right:0in;
        mso-margin-bottom-alt:auto;
        margin-left:0in;
        font-size:12.0pt;
        font-family:"Times New Roman","serif";}
.MsoChpDefault
        {mso-style-type:export-only;}
@page WordSection1
        {size:8.5in 11.0in;
        margin:1.0in 1.0in 1.0in 1.0in;}
div.WordSection1
        {page:WordSection1;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]--></head><body lang=EN-US link=blue vlink=purple><div class=WordSection1><p class=MsoNormal align=center style='text-align:center;text-autospace:none'><b><span style='font-size:16.0pt;font-family:"Arial","sans-serif"'>Ph.D. Defense<o:p></o:p></span></b></p><p class=MsoNormal align=center style='text-align:center;text-autospace:none'><b><span style='font-size:13.5pt;font-family:TTFFAD44E8t00'><o:p> </o:p></span></b></p><p class=MsoNormal align=center style='text-align:center;text-autospace:none'><b><span style='font-size:13.5pt;font-family:TTFFAD44E8t00'>COMPRESSIVE SENSING APPLICATIONS FOR WIRELESS<o:p></o:p></span></b></p><p class=MsoNormal align=center style='text-align:center;text-autospace:none'><b><span style='font-size:13.5pt;font-family:TTFFAD44E8t00'>COMMUNICATIONS<o:p></o:p></span></b></p><p class=MsoNormal align=center style='text-align:center;text-autospace:none'><span style='font-size:13.5pt;font-family:TTFFAD44E8t00'><o:p> </o:p></span></p><p class=MsoNormal align=center style='text-align:center;text-autospace:none'><span style='font-size:13.5pt;font-family:TTFFAD44E8t00'>By JIA MENG<o:p></o:p></span></p><p class=MsoNormal align=center style='text-align:center;text-autospace:none'><span style='font-size:13.5pt;font-family:TTFFAD44E8t00'>Electrical and Computer Engineering<o:p></o:p></span></p><p class=yiv443321538msonormal align=center style='text-align:center'><b><span style='font-size:14.0pt'>Date: Nov, 15th, (Monday)</span></b><o:p></o:p></p><p class=yiv443321538msonormal align=center style='text-align:center'><b><span style='font-size:14.0pt'>Time: 12:00pm-1:30pm</span></b><o:p></o:p></p><p class=yiv443321538msonormal align=center style='text-align:center'><b><span style='font-size:14.0pt'>Location: W342-D3 Engineering Bldg. #2<o:p></o:p></span></b></p><p class=yiv443321538msonormal align=center style='text-align:center'><b><span style='font-size:14.0pt'>Advisor: Zhu Han</span></b><o:p></o:p></p><p class=MsoNormal align=center style='text-align:center;text-autospace:none'><b><span style='font-size:14.0pt'>Abstract</span></b><span style='font-size:13.5pt;font-family:TTFFAD44E8t00'><o:p></o:p></span></p><p class=MsoNormal style='text-autospace:none'><span style='font-size:10.5pt;font-family:Times-Roman'>Compressive sensing theory which links data acquisition, compression, dimensionality reduction, and optimization, has attracted great many research attentions in recent years. The CS theory consists of three key components, namely, signal sparsity, incoherent measurement matrix, and signal recovery. It claims that, as long as the signal to be measured is sparse, or can become sparse after some known transformation; the information in the signal can be preserved in a small number of its incoherent measurements, and convex optimization offers overwhelming signal recovery probability.<o:p></o:p></span></p><p class=MsoNormal style='text-indent:.5in;text-autospace:none'><span style='font-size:10.5pt;font-family:Times-Roman'><o:p> </o:p></span></p><p class=MsoNormal style='text-autospace:none'><span style='font-size:10.5pt;font-family:Times-Roman'>The bulk of the dissertation explores the CS framework and proposes several implementations in wireless communications. Specifically, we first propose to apply compressive sensing for collaborative spectrum sensing in cognitive radio networks to reduce the amount of sensing and transmission overhead. This is realized by innovatively equipping each cognitive radio nodes with an on-board frequency selective filter set, through which the sensing information is blended incoherently and can be decoded at the fusion center via joint sparsity recovery or matrix completion technique. Then, we design a “high resolution OFDM channel estimation with low speed ADC using compressive sensing” system. Aiming at increasing the channel estimation resolution without increasing the costly ADC speed, we form a random convolution sensing scheme by carefully arranging the pilot tones and taking advantage of the channel– signal convolution nature. Moreover, based on the observation that the received signals are sparse in the time domain due to the limited multipath effects at </span><span style='font-size:10.5pt;font-family:T3Font_0'>60 </span><span style='font-size:10.5pt;font-family:Times-Roman'>GHz UWB wireless transmission, we design a CS based low speed DC to reduce the sampling rate, while still be able to reconstruct the signal with high fidelity. Finally, we implement CS framework for sparse events detection in wireless sensor networks, in which the sensor activation events are sparse. We propose the use of a small number of monitoring tubes to take very limited number of incoherent measurements, which are then decoded through the Bayesian framework with a heuristic algorithm to enhancing the detection probability.<o:p></o:p></span></p><p class=MsoNormal><o:p> </o:p></p><p class=MsoNormal><o:p> </o:p></p></div></body></html>