<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<meta name="Generator" content="Microsoft Word 15 (filtered medium)">
<!--[if !mso]><style>v\:* {behavior:url(#default#VML);}
o\:* {behavior:url(#default#VML);}
w\:* {behavior:url(#default#VML);}
.shape {behavior:url(#default#VML);}
</style><![endif]--><style><!--
/* Font Definitions */
@font-face
        {font-family:"Cambria Math";
        panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
        {font-family:Calibri;
        panose-1:2 15 5 2 2 2 4 3 2 4;}
@font-face
        {font-family:"Trebuchet MS";
        panose-1:2 11 6 3 2 2 2 2 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
        {margin:0in;
        margin-bottom:.0001pt;
        font-size:11.0pt;
        font-family:"Calibri",sans-serif;}
a:link, span.MsoHyperlink
        {mso-style-priority:99;
        color:blue;
        text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
        {mso-style-priority:99;
        color:purple;
        text-decoration:underline;}
p.msonormal0, li.msonormal0, div.msonormal0
        {mso-style-name:msonormal;
        margin:0in;
        margin-bottom:.0001pt;
        font-size:11.0pt;
        font-family:"Calibri",sans-serif;}
span.EmailStyle21
        {mso-style-type:personal-reply;
        font-family:"Calibri",sans-serif;
        color:windowtext;}
.MsoChpDefault
        {mso-style-type:export-only;
        font-size:10.0pt;}
@page WordSection1
        {size:8.5in 11.0in;
        margin:1.0in 1.0in 1.0in 1.0in;}
div.WordSection1
        {page:WordSection1;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]-->
</head>
<body lang="EN-US" link="blue" vlink="purple">
<div class="WordSection1">
<p class="MsoNormal"><o:p> </o:p></p>
<p class="MsoNormal"><o:p> </o:p></p>
<div>
<div align="center">
<table class="MsoNormalTable" border="0" cellpadding="0" width="600" style="width:6.25in">
<tbody>
<tr>
<td style="padding:.75pt .75pt .75pt .75pt">
<div>
<p class="MsoNormal"><span style="font-size:13.5pt;font-family:"Arial",sans-serif"><a href="https://www.chee.uh.edu" target="_blank"><span style="color:#C8102E;text-decoration:none"><img border="0" width="600" height="165" style="width:6.25in;height:1.7187in" id="_x0000_i1025" src="https://www.egr.uh.edu/sites/www.egr.uh.edu/files/enews/2022/images/sa_header.png" alt="William A. Brookshire Department of Chemical and Biomolecular Engineering Seminar Series"></span></a><o:p></o:p></span></p>
</div>
<div align="center">
<table class="MsoNormalTable" border="0" cellpadding="0">
<tbody>
<tr>
<td style="padding:.75pt .75pt .75pt .75pt">
<p align="center" style="mso-margin-top-alt:11.25pt;margin-right:0in;margin-bottom:11.25pt;margin-left:0in;text-align:center;mso-line-height-alt:16.5pt">
<strong><span style="font-size:20.0pt;font-family:"Calibri",sans-serif">Resonance-Promoted Oxidation via Dynamic Electrocatalytic Modulation</span></strong><span style="font-size:20.0pt;font-family:"Arial",sans-serif"><o:p></o:p></span></p>
<p class="MsoNormal" align="center" style="text-align:center"><o:p> </o:p></p>
<p align="center" style="mso-margin-top-alt:11.25pt;margin-right:0in;margin-bottom:11.25pt;margin-left:0in;text-align:center;line-height:16.5pt">
<strong><span style="font-size:16.0pt;font-family:"Calibri",sans-serif">Omar Abdelrahman</span></strong><span style="font-size:12.0pt;font-family:"Arial",sans-serif"><br>
Assistant Professor<br>
University of Massachusetts Amherst<o:p></o:p></span></p>
<p align="center" style="mso-margin-top-alt:11.25pt;margin-right:0in;margin-bottom:11.25pt;margin-left:0in;text-align:center;line-height:16.5pt">
<strong><span style="font-size:12.0pt;font-family:"Arial",sans-serif">Friday, January 27, 2023 | 10:30am Central</span></strong><b><span style="font-size:12.0pt;font-family:"Arial",sans-serif"><br>
</span></b>Engineering 2, room W122<span style="font-size:12.0pt;font-family:"Arial",sans-serif"><o:p></o:p></span></p>
<p align="center" style="mso-margin-top-alt:11.25pt;margin-right:0in;margin-bottom:11.25pt;margin-left:0in;text-align:center;line-height:16.5pt">
<strong><span style="font-size:12.0pt;font-family:"Arial",sans-serif;color:#C8102E">LECTURE ABSTRACT</span></strong><span style="font-size:12.0pt;font-family:"Arial",sans-serif;color:#C8102E"><o:p></o:p></span></p>
<p class="MsoNormal" style="text-align:justify"><span style="font-family:"Times New Roman",serif">As developments into more sustainable and economically viable energy production and chemical transformation technologies continue to evolve, catalysis research
has iterated towards the application of external stimuli to accelerate catalytic performance, pushing beyond the limitations of material design alone. However, the use of external stimuli has not significantly altered the landscape of heterogeneously catalyzed
chemical and energy production. Through microkinetic modeling, computational calculations, and experimental kinetics, we demonstrate the ability to accelerate the activity of existing materials through periodic energetic oscillations applied directly to the
catalytic surface. Applying the energetic oscillations at precisely controlled frequencies, dynamic catalysts can greatly exceed the activity and selectivity of their static analog. We recently demonstrated this dynamic concept experimentally, using electrochemical
potential as a means of reaction pathway control that facilitates formic acid oxidation over Pt; the rate of potentiodynamic formic acid oxidation was more than an order of magnitude faster than potentiostatic oxidation. The ability to form carbon monoxide
via formic acid dehydration, and its subsequent oxidation to carbon dioxide, are favored at dissimilar anodic potentials at the Pt surface. Oscillating between distinct electrochemical potentials that favor the formation, and subsequent oxidation of carbon
monoxide, facilitates the overall rate of formic acid oxidation. The acceleration of the catalytic cycle through this dynamic approach is maximized at a unique range of frequencies, proposed to be in resonance with the kinetic timescales of individual surface
reactions. <o:p></o:p></span></p>
<p align="center" style="mso-margin-top-alt:11.25pt;margin-right:0in;margin-bottom:11.25pt;margin-left:0in;text-align:center;line-height:16.5pt">
<strong><span style="font-size:12.0pt;font-family:"Arial",sans-serif;color:#C8102E">SPEAKER BIOSKETCH</span></strong><span style="font-size:12.0pt;font-family:"Arial",sans-serif;color:#C8102E"><o:p></o:p></span></p>
<p align="center" style="mso-margin-top-alt:11.25pt;margin-right:0in;margin-bottom:11.25pt;margin-left:0in;text-align:center;line-height:16.5pt">
<span style="font-family:"Times New Roman",serif">Omar Abdelrahman grew up in the Middle East (United Arab Emirates), where he received his BSc in Chemical Engineering (American University of Sharjah, 2011), before moving to upstate New York for his PhD in
Chemical Engineering (Syracuse University, 2016), followed by a postdoctoral position at the University of Minnesota. In 2018, Omar joined the University of Massachusetts Amherst as an assistant professor in the department of Chemical Engineering. The Abdelrahman
lab’s primary research focus is heterogeneous catalysis, with an emphasis on understanding and controlling non-ideal thermodynamic environments relevant to renewable chemical transformations. They are also passionate about advancing accessible and affordable
science, through developing and disseminating experimental designs aimed at lowering the barrier to entry in catalysis research.
<o:p></o:p></span></p>
<p align="center" style="mso-margin-top-alt:11.25pt;margin-right:0in;margin-bottom:11.25pt;margin-left:0in;text-align:center;line-height:16.5pt">
<span style="font-size:10.5pt;font-family:"Arial",sans-serif"> <o:p></o:p></span></p>
<p align="center" style="mso-margin-top-alt:11.25pt;margin-right:0in;margin-bottom:11.25pt;margin-left:0in;text-align:center;line-height:16.5pt">
<em><span style="font-size:8.5pt;font-family:"Arial",sans-serif">This is an official message sent by the William A. Brookshire Department of Chemical & Biomolecular Engineering.</span></em><span style="font-size:8.5pt;font-family:"Arial",sans-serif"><o:p></o:p></span></p>
</td>
</tr>
</tbody>
</table>
</div>
</td>
</tr>
<tr>
<td style="padding:.75pt .75pt .75pt .75pt">
<p class="MsoNormal"><span style="font-size:13.5pt;font-family:"Arial",sans-serif"><a href="https://www.chee.uh.edu" target="_blank"><span style="color:#C8102E;text-decoration:none"><img border="0" width="600" height="165" style="width:6.25in;height:1.7187in" id="_x0000_i1027" src="https://www.egr.uh.edu/sites/www.egr.uh.edu/files/enews/2022/images/sa_footer.png" alt="William A. Brookshire Department of Chemical and Biomolecular Engineering"></span></a><o:p></o:p></span></p>
</td>
</tr>
</tbody>
</table>
</div>
<p class="MsoNormal"><span style="font-size:10.0pt;font-family:"Trebuchet MS",sans-serif;color:black"><o:p> </o:p></span></p>
</div>
</div>
</body>
</html>